Wednesday, October 12, 2022

Introducing Basic Differential Operators

 Differential Operators are useful, and often shorthand ways to approach writing differential equations - including systems of equations. They can be written in various forms, but basically:

D x u  =   ux   e.g. 

 

 du/ dx =   ux

Are first degree ordinary differential equations.  

But we begin by using basic forms, say to obtain derivatives.   In general:

(D x y) n  =   dn y / dxn       n=  1, 2, 3….

Then:  (D x y) 2  =   d2 y/ dx2      

 

(D x y) 3  =   d3 y/ dx3      


And so forth:


Examples:


a)  Find:  (D x y) 2   (4x3  +  3x


Then:  d2 y/ dx2   (4x3  +  3x


=  12 x +   6x



b)  (D x y)  (4/ x)


Then:  y/ dx   (4/x) =  -4/  x



c)  Find:  (D x y) 2   (sin 4x)


Then:  d2 y/ dx2   (sin 4x)  


Take 1st derivative first:


dy/ dx (sin 4x)  = 4 cos (4x)



Then take derivative again, i.e.


dy/ dx (4 cos (4x))


=  - 16 sin (4x)


Of special interest is the inverse differential operator, viz.


(D-1  x n )   =    ( xn+1 )  /  (n + 1)


Similarly for higher order::


(D-2  x n )   =  (D-1 ) ( xn+1 )  /  (n + 1) = 


xn+2  /  (n  +1 )  (n  +  2) 


And for higher order (k) in general:


(D-k  x n )   =    (xn+k )   (n+ 1) (n + 2)...(n  +   k)  


Thus,  1/D stands for the integral, e.g.     F(x)dx  but with denominator corrected for as given by inverse formulae above.

 

And is the inverse differential operator

 

And 1/ D n  stands for successive (n)  integration.


So we see the inverse operator has the same effect as integration, but disregarding the constants of integration.


Suggested Problems:


Evaluate each of the following:


1) (D x y)  (ln x / 1+  x)


2) (D x y)  ½ ( x   -  -x)   


3) D-1  ( 11 x)  


 4)  (D x y)    ( e x   ln x)


5)  D-1  (sin x  cos x)  


6)  D-1  (tanh x )  


7)  (D x y)  (sech 2 x)


8)   D-2  (3 x )  


9)  D-1  ( cosh 2  3x)


10)   D-2  (1/  x


11) D-1  ( 3x2 )


12) (D  - a) ax


13) (D  - a)-1   ax


14) (D- 1)  


15(D  - 1)-1   x4


No comments: