(1)
Photo-electrons with minimum velocity
imply that K min   applies here  so indicates the wavelength of incident light
(l = 0.50 mm) is at the cutoff wavelength so: l = l c     Then the cutoff or threshold frequency is: 
f
c = c /l
c =    (3 x 108 ms-1)/
(500 x  10-9 m) =  6 x 10 14 s-1
Then
work function would be: f   = hf c  =    
(6.62 x 10 -34 Js) ( 6 x 10 14 s-1)
(6.62 x 10 -34 Js) ( 6 x 10 14 s-1)
=   3.97  x 10 -19
J  =   
(3.97  x 10 -19 J )/ 1.60  x 10 -19
J /eV) = 2.48 eV 
(2)
Stopping potential Vs = 0.54 V and l = 750 nm
f=  c/ l =  
(3 x 108 ms-1)/ (750 x  10-9 m) =  4 x 10 14  s-1
The
work function is obtained from: eVs =  hf 
-  f
So,
transposing:   f  =  hf
-    eVs     =   
  (6.62 x 10 -34 Js)  (4 x 10 14 /s) -   (1.6
x 10 -19 C) 0.54 J/C] 
f  =   2.64 x 10 -19 J  -  
0.86 x  10 -19 J    =
1.78 x  10 -19 J    
In
eV:  f 
=    1.78 x  10 -19
J / (1.6 x 10 -19 J/
eV) =  1.11 eV      
(3)
K max  =   0.57 eV  
and photo-electrons dislodged from a metal surface by incident radiation
with l = 500 nm.
The
incident energy E = hf = h c/l  = 
(6.62 x 10 -34 Js) (3 x 108 ms-1)/ (500 x 10-9 m)
(6.62 x 10 -34 Js) (3 x 108 ms-1)/ (500 x 10-9 m)
 h c/ l = 3.97  x 10-19 J
K
max  =   0.57 eV (1.6 x 10 -19 J/ eV) = 0.91 x 10 -19
J
Therefore:
K
max  =  0.91 x
10 -19 J
 = [3.97  x 10-19 J  -   f ]
So,
the work function is: f  = 
[3.97  x 10-19 J    - 
0.91 x 10 -19
J]  = 
3.06 x 10 -19
J
To
get in eV:   (3.06 x 10 -19 J)/ (1.6 x 10 -19 J/ eV) =  1.91 eV
The
stopping potential in volts:
Vs
=   hf/ e  
-  f/e    where the slope h/e = 4.13 x 10-15
Js/C
The
frequency f = c/l  =    (3
x 108 ms-1)/ (500 x 
10-9 m) =  
6 x 10 14 c/s
6 x 10 14 c/s
Then:
Vs
= (4.13 x 10-15 J s/C )(6 x 10 14 s-1)
-  
(3.06 x 10 -19 J)/ (1.6 x 10 -19 C)
(3.06 x 10 -19 J)/ (1.6 x 10 -19 C)
Vs   = 2.47 V – 1.91 V =  0.56 V
 
No comments:
Post a Comment