Solution:
The energies for the 1st, 2nd and 3rd
Balmer transitions will be, respectively:
1st)  E (n=5 to n = 2 ) =  - 13.6 (
1/ 5 2   -1/ 2 2 )
2nd)
E (n=4 to n = 2 ) =  - 13.6 ( 1/ 4 2   -1/ 2 2 )
3rd)  E (n=3 to n = 2 ) =  - 13.6 (
1/ 3 2   - 
1/ 2 2 )
Take
differences between energy levels for Balmer lines:
Balmer
a line (called H- alpha):
E3
– E2 =  - 13.6 eV ( 1/ 3 2   - 
1/ 2 2 )   = -
 13.6 eV( 1/9 – ¼) = -13.6 eV (-5/ 36) = 1.88
eV
Now,
1 eV =  1.6 x 10-19 J  so:
So:  E3 – E2 =    1.88
eV  (1.6 x 10-19 J  /eV) = 3.02
x 10-19 J  
From
this, the wavelength of the photon emitted can be found. Since E = hf = h (c/ l):
l =   hc/ (E3 – E2)  
l =    (6.626069 x 10- 34 J-s)(3 x 10 8
m/s)/ (3.02 x 10-19 J )   
l =    6.56 x  10- 7 m
Balmer
b line (called H b):
E4
– E2 =  - 13.6 eV ( 1/ 4 2   - 
1/ 2 2 )   
=
- 13.6 eV( 1/16 – ¼) =   -13.6 eV ( -3/16) =   
2.55 eV
 1 eV = 
1.6 x 10-19 J  so:
So:  E4 – E2 =    
2.55 eV (1.6 x 10-19 J /eV) = 4.08 x 10-19 J
2.55 eV (1.6 x 10-19 J /eV) = 4.08 x 10-19 J
As
before, the wavelength of the photon emitted is:
l =   hc/ (E4 – E2)  = 
(6.626069 x 10- 34 J-s)(3 x 10 8 m/s)/ (4.08 x 10-19 J )
(6.626069 x 10- 34 J-s)(3 x 10 8 m/s)/ (4.08 x 10-19 J )
l =    4.47 x  10- 7 m
Balmer
g  line (called Hg ):
E5
– E2 =  - 13.6 eV ( 1/ 5 2   - 
1/ 2 2 )   
=
- 13.6 eV( 1/25 – ¼) = -13.6 eV ( -21/100) =   
3.4 eV
 1 eV = 
1.6 x 10-19 J  so:
So:  E5 – E2 =   
3.4 eV (1.6 x 10-19 J /eV) = 5.44 x 10-19 J
3.4 eV (1.6 x 10-19 J /eV) = 5.44 x 10-19 J
As
before, the wavelength of the photon emitted is inversely proportional to the
difference between energy levels:
l =   hc/ (E5 – E2)  =  
(6.626069 x 10- 34 J-s)(3 x 10 8 m/s)/ (5.44 x 10-19 J )
(6.626069 x 10- 34 J-s)(3 x 10 8 m/s)/ (5.44 x 10-19 J )
l =    3.63 x  10- 7 m
 
No comments:
Post a Comment