Thursday, August 25, 2022

More Abstract Algebra: Looking Again At Rings, Fields And Ideals

  Ring (def.)


By a ring (S, +, · ) one means an abstract set  S  which has two binary operations defined on it. The operation + is called addition, and the operation · is called multiplication. Moreover, the set (S, +, ·) is required to satisfy the following axioms:

Let a, b and c Î  S

A1):  a + (b + c) = (a + b) + c

A2)    an element  0 Î  S with the property that 0 + a = a

A3)  For each element Î  S there exists an element
         (-a)  Î  S  such that  a + (-a) = 0

A4)   a + b = b + a

A5)  a · (b · c)     = (a · b)  · c

N.B.  Any field is a ring.

ii)                Commutative Ring

By a commutative ring (S, + · ) one means a ring (S, + · )  which satisfies, in addition to the ring axioms the axiom:

A6)   For all  a, b  Î  S  then a · b  = b · a

And there also exist the properties:

a)Closure: If a,b Î S, then the sum a+b and the product a·b are uniquely defined and belong to S.

b)Associative laws: For all a,b,c  Î S,

a+(b+c) = (a+b)+c and a·(b·c) = (a·b)·c.

c)Commutative laws: For all a,b  Î S,    a+b = b+a and a·b = b·a. 
d)Distributive lawsFor all a,b,c Î  S,
a·(b+c) = a·b + a·c and (a+b)·c = a·c + b·c

e)Additive identityThe set R contains an additive identity element, denoted by 0, such that for all     a Î  S,

a+0 = a and 0+a = a.

f)Additive inversesFor each a Î  S, the equations:

a+x = 0 and x+a = 0

have a solution x  Î  S, called the additive inverse of a, and denoted by  (-a).

The commutative ring S  is called a commutative ring with identity if it contains an element 1, assumed to be different from 0, such that for all a Î  S,

a·1 = a and 1·a = a.

In this case, 1 is called a multiplicative identity element

iii)Commutative Ring with unity

By a commutative ring with unity one means a commutative ring (S, + · ) which satisfies the axiom:

A7)  There exists an element 1  Î  S  with the property:

1  · a  = a for all a  Î  

iv)Integral domain

By an integral domain  ring (S, + · )  one means a commutative ring with unity which satisfies the following axiom:

If a, b  Î  S    and a · b  = 0 then either a = 0 or b = 0.

v)Field

By a field (S, + · )  one means a commutative ring with unity which satisfies the additional axiom:

A7) For every non-zero element a  Î  S    there exists an element a - 1  Î  S  such that:    a · a - 1 =   1.  The element    a - 1   is called the reciprocal or multiplicative inverse of a.

vi)                    Ordered Field

An ordered field is a field (S, + · )  which contains a subset P (called the positive cone in P) which has the following properties:

P is a proper subset of S.

O.1) P is closed under addition.

O.2)  P is closed under multiplication

O.3) If  a  Î  S   then one and only one of the following three conditions must hold:

a = 0,    a  Î  P, or    - a  Î  P

vii) Order relation on an ordered field

Let   (F , + · )  be an ordered field and let P represent the positive cone in F. We define a relation ‘<’  on F, called ‘less than’ by the formula:

<   =    {(a, b) :   a, b  Î  F, b – a Î  P }

Or, equivalently:

a  < b if an only if   b – a Î  P

We also define the relation ‘greater than’ on F by
>  as follows:

s > b if and only if b < a

Definition. The field K is said to be an extension field of the field  (F + · )   if  (F + · )    is a subset of K which is a field under the operations of K.

Definition. Let K  be an extension field of F and let u  Î K. If there exists a nonzero polynomial f(x)  Î  F[x] such that f(u)=0, then u is said to be algebraic over F. If there does not exist such a polynomial, then u is said to be
transcendental over K.

Proposition. Let K be an extension field of F , and let u Î K be algebraic over F. Then there exists a unique irreducible polynomial p(x)  Î  F[x] such that p(u)=0. It is characterized as the monic polynomial of minimal degree that has u as a root.

Furthermore, if f(x) is any polynomial in F[x] with f(u)=0, then p(x) | f(x).


Definition. Let F   be a field and let f(x) = a0 + a1 x + · · · + axn be a polynomial in F [x] of degree n> 0. An extension field K   of F   is called a splitting field for f(x) over F if there exist elements r1, r2, . . . , rn   Î  F such that

(i)                 f(x) = an (x-r1) (x-r2· · · (x-rn), and

(ii)               K  = F (r1,r2,...,rn).

In the above situation we usually say that f(x) splits over the field F. The elements r1, r2, . . . , rn are roots of f(x), and so K  is obtained by adjoining to F  a complete set of roots of f(x).

Definition: Subfield of a field.  Let (F + · )   be a field. A subset  T  ⊂    F is  called a subfield if  T is closed under the operations of   +  and  · , and T is a field under those operations.    

Definition: Ideal:   Let (S,  + · )    be a commutative ring, by an ideal I in S one means the following:

i)I is a subring of S,

ii)If  a   Î  I ,  b   Î  S then a, b    Î  I

Definition: A homomorphism φ:  R -> R' from one ring to another is a map which is compatible with the laws of composition and which carries 1 to 1, i.e. a map such that: φ(a + b) =    φ(a ) + φ (b)  and  φ(a b) =   φ(a) φ (b)

for all a,b Î  R.

An isomorphism of rings is a bijective homomorphism.  If there is an isomorphism R  -> R', the two rings are said to be isomorphic.


Definition: Congruence modulo I.

Let S be a commutative ring. Let I be an ideal in S. We write  a    b modulo I for the two elements a, b    Î  S if
a   Î [ b ]. Hence,  b   Î [ a ].

Definition:  S is a commutative ring and I is an ideal. Then let S/ I denote  a quotient ring and the set of congruence classes modulo I. 

Perhaps the most critical aspect of ideals to note is that: an ideal is to a ring as a normal subgroup is to a group”.  Also, in a similar manner to groups, one can have left and right ideals.

Let   a   Î  S,   a commutative ring. 

Then the set (a) defined by: (a) = {ax: ,  x Î  S }  is an ideal.

Now, let S be a commutative ring and I be an ideal in S. For each element a  Î  S let [a] be the subset of S defined by:

[a]  = I  + a = {a + j:  j   Î  S}

Further, let s be a subring of a ring S satisfying:

[a]  s       s   and s[a]     s  for all  a   Î  S is an ideal (or two-sided ideal of S). Also, a subring s of S satisfying [a]  s       s    for all  a   Î  S is a left ideal of S. One satisfying  s [a]      s    for all  a   Î  S is a right ideal of S.

Example Problems:

Find all ideals I of the integer class Z 12    and in each case compute:

 

Z 12  / I  

 

I.e. find a known ring to which the quotient ring is isomorphic

 

Solutions:


1 =  [0] ,   Z 12  / I 1    ~    Z 12  


2 =  {0, 2, 4, 6, 8, 10;  Z 12  / I 2~    Z 2  

 

3 =  {0, 3, 6, 9; 10,  Z 12  / I 3~   Z 3  

 

4 =  {0, 4, 8;   Z 12  / I 4~   Z 4  

 

5 =  {0, 6;   Z 12  / I 5~   Z 5  

 

I 6 =  Z 12 ,  Z 12 / Z 12~    0 

 

2) Find a subring of the ring Z + Z  which is not an ideal of Z + Z

 

Solution:

 

{n, n   |    Î Z}


3) Give all units in each of the following rings: 


 a)  b) Z + Z   c)  5    d) Q


Solutions:  

 a) 1, -1   

 b) (1,1), (1, -1), (-1, 1), (-1, -1)   

c) 1, 2, 3, 4  

d) all non zero q  Î Q  


4) Let S be a commutative ring with I an ideal a  Î S, with (a) = {ja : j Î S},  

Prove that S is closed under +   and ·   

Soln. 

We assume x Î (a),   y Î S,   

Then x = ja for some j Î S,   So:  · x = y(ja)=  (yj) a Î a  And we can write the following formulation:  If x,y  Î (a) then x + y  Î (a),  

 Also: x = ja for some j Î S,  then x - y   Î (a)  and further, y = j' a for some j' Î S then x· y  Î (a)   

 Then for (+) closure: x + y = ja + j'a = (j + j') a  Î (a)   

 For (· ) closure:  x · = ja  ·  j'a  =  (j - j') a Î (a)  

And for subtraction: x - y =  ja - j'a = (j - j') a Î (a)     

5)  Is Q [x] /x2  - 5 x  + 6 a field? Why?   

Soln.   No.  x2  - 5 x  + 6   is not a maximum ideal of  Q [x]  since  x2  - 5 x  + 6  

= (x  -  3) (x -2) is not irreducible over Q


Problems for Math Mavens:


1)      Let Z be the integers. Then prove for each class:   

[a] mod n there exists an integer  r   Î  Z, for:         0 < r < n,   r   Î  [n]

2)     Let Z be the integers.  The ideal: 

           (5)  =   {5 j:  j Î  Z }

        Show all the congruence classes with respect to this ideal.    

Hint:  [a] =  {a + j: j Î [(5)}  = {a +  5j: Î  Z }


3)      Let S be a commutative ring, and let I be an ideal in S. If A, B are subset of S, then use set notation to define: i) A ·  B,   A + B

4)     Take S as the set of integers, Z. Let the ideal I = (2) so that S / I =  Z 2     Thence or otherwise, find:

a)     [0]     b)   [1]     c) S/ I  =  Z 5       

5)      Show every ring S has two ideals: S itself and {0}.

6)  Is Q [x] /x2  - 6 x  + 6 a field? Why or why not? 

7)Let (G) and (H) be groups. Then a homomorphism of (G) into (H) is a map of the sets G and H which has the following property:  f(x o y) = f(x) o f(y)

 Let G = (0, 1, 2, 3) for the operation (+) which is addition in Z4

Let H = (2, 4, 6, 8) for the operation (·) which is multiplication in Z10

Prepare the respective tables for the isomorphism and give specific examples in terms of the function φ, i.e. show specific mappings.  (Where: φ(x) φ(y) = φ(xy) for example)


No comments: