
Recall that we saw the “residue theorem” (due to Cauchy)i.e.  Let f(z) be analytic on and inside a closed contour C (see diagram) except for a finite number of isolated singularities at z = a1, a2…..etc., which are enclosed by C.
òC  f(z)  dz
=       2 pi    ån k = 1    Res f (a k)  
We now want to elaborate this a bit more by reference to the diagram shown. In this case we consider the function f(z) is analytic inside and ON the simple closed curve C except at a finite number of specified points: a, b, c, etc. at which there exist residues: a - 1 , b - 1 , c - 1 , etc.
In which case we can write:
òC  f(z)  dz
=   2 pi   [a - 1        + 
b - 1         
+  c - 1        + …………………….]
ò C f(z) dz = ò C1 f(z) dz + ò C2 f(z) dz + ò C3 f(z) dz + ..........
Where:
òC1  f(z) 
dz   =   2 pi   a - 1        
òC2  f(z) 
dz  =  2 pi   b - 1        
òC3  f(z) 
dz   =   2 pi   c - 1        
So
that:
òC  f(z)  dz
=   2 pi   [a - 1        + 
b - 1         
+  c - 1        + ..] = 
2 pi (sum of residues)
Example
1:
Evaluate the integral: 
ò C  cot (z) 
dz
f(z)
= cot (z)
For
which: ò C  f(z) 
dz   =   2 pi   c - 1        
Or:
o, + p, + 2p,+  3p 
etc.
Then
Res f(z) =   1/ sec2 z ÷ z = + n p 
   =   
1/ (1/ cos2 z)
=
cos2 z÷ z = + n p 
   =   
cos2 (np)   
And
:  cos2 (np)    = 1  
at z =  (2n + 1) p)/ 2
Therefore:
   c - 1        = 
1, and
  òC  cot (z) 
dz  =    2 pi   (1) = 2 pi   
Example
2:
ò C  exp (z)  
dz  /  (z – 1) (z + 3)2
Where
C is given by  ÷ z  ÷    =   3/2  
Solution:
Take the residue at the simple pole (z = 1) such that:
lim z ® 1 
 [ (z – 1) 
exp (z)    / ( z  -  1) (z
+ 3)2  ] = 
exp(1)/ 16 = e/ 16
The
residue at the 2nd order pole (z = -3) is:
lim z ® -3 
d/ dz  [(z + 3)2    exp (z)   
/ ( z  -  1) (z + 3)2  ] =  
lim z ® -3 
 [ (z – 1) 
exp (z)    - exp(z) / (z – 1 )2
 ]
 
   = - 5 exp (-3) / 16
The
integral is therefore:
ò C  exp (z)  
dz  /  (z – 1) (z + 3)2    =  2 pi   a - 1  
=   2 pi   (e/
16)
(We
do not add the 2nd residue because it lies beyond the circle ÷ z  ÷    =   3/2  )
Problems for Math
Mavens:
2)
Consider Example (2) and obtain the integral if we have ÷ z  ÷   =  10  
instead of 
 ÷ z  ÷    =   3/2  
3)  Evaluate the integral:   ò C    z   dz / (z2  - 2z + 2)2
in the upper half z-plane
 
No comments:
Post a Comment