Problem:
 first factor to get:  f(x) 
=    x/  (x  - 1
+ i)(x  - 1 -   i)
In
terms of the z variable:
f(z)  =   
z/  (z  - 1 + i)(z 
- 1 -   i)
In
the upper half plane we need to obtain Res f(z+) for z = 1+i
lim z ® 1+i 
   [z/(z 
- 1 +  i) ]  =   (1
+i)/ 2i
=   ½   -
½  i
Then:  Res f(z+) =  
2 pi [½   -  
½  i ] =  pi 
-    pi 2
 = pi 
+    p = p (i  +   1) 
In
the  lower half plane we need to obtain
Res(f(z-) for z = 1- i
lim z ® 1-i 
     [(z  - 1 + 
i)   z/  (z  - 1
+ i) (z  - 1 -   i)]
=  lim z ® 1-i 
   [z/(z 
- 1 -  i) ]  =   (1
-i)/ (– 2i)
=
½   +  
½  i
Then:  Res f(z-) =  
- 2 pi [½   +  
½  i ] =  -pi 
-    pi 2
=
-pi   -    p    =  - p(i  -   1) 
∫ -¥  ¥    x  dx /
(x2   - 2x +
2) =  p (i 
+   1) 
For
the lower half plane:  
∫ -¥  ¥    x  dx /
(x2   - 2x +
2) =  - p(i  -   1) 
Note: To modify the development for any case where the singularity is in the lower half plane, or m < 0 (i.e. m = -i) we have:
∫ -¥  ¥    exp(im x)  f(x) dx  = - 2 pi å (Res)
 Question: What would you obtain if Res f(z+) and Res f(z-) are added together?
 
No comments:
Post a Comment