
Recall we’d previously seen the function f(z) expressed as the Laurent series
f(z)
= å¥ n = -¥   c n (z – a) n  +    å¥ n =-¥   c -n /  (z – a) n  
We
also noted that no positive powers of z appear, only negative, i.e. 1/z is  z - 1 .   So, in effect we could say that the coefficients of the positive powers are
zero.  It was also important to note
here that the coefficient of :
1/ 1! z     = 1/ z
is unity, so according to Laurent’s theorem we designate
that coefficient:
c n  =  1/2 pi  ò C  exp( 1/z)  dz
where
C is any positively oriented simple closed contour around the origin. Further,
since  n= 
- 1 then, say for a function f(z) = exp(1/z):
 c - 1  =  1/2 pi  òC  exp( 1/z) 
dz   and:  òC  exp( 1/z) 
dz    =  2 pi  
And in this way, one can actually compute what is called “the residue” from a term of the Laurent series. The “residue theorem” (due to Cauchy) is as follows:
Let
f(z) be analytic on and inside a closed contour C (see diagram) except for a
finite number of isolated singularities at z = a1, a2…..etc., which are
enclosed by C. Then:
òC  f(z)  dz
=       2 pi    ån k = 1    Res f (a k)  
Alternately, Res f (a k) = 1/2 pi òC f(z) dz
Thus,
if we have some function f(z) centered at a we know we have a Laurent
expansion:
f(z)
=  = å¥ n = -¥   c n (z – a) n  +    å¥ n =-¥   c - n /  (z – a) n  
(There
is no need to compute the actual integral)
If f(z) is analytic at z = a the point z = a is then called a regular point and Res f(a) = 0. If, however, z = a is an isolated singularity, then the residue may or may not = 0.
Things
can be made even more straightforward by deriving a basic formula for computing
the residue. 
Assume f(z) has a pole of order m then the Laurent series of
f(z) is:
f(z)
=  a - m  / (z – a) m      +   
a – m+ 1  / (z – a) m - 1      +   
a - 1  / (z – a)  +   a 0  + a 1
(z – a) +   + a 2 (z – a)2  
+  …… 
Now,
multiply through by  (z – a) m     :
(z – a) m    f(z) =    
a - m    
+    a – m+ 1    (z – a)  
+   
……. a - 1 / (z – a) m - 1 + ….
……. a - 1 / (z – a) m - 1 + ….
Which represents a
d
m - 1    / dz m - 1    {(z – a) m    f(z) } =  
(m – 1)! a - 1  +  m (m
– 1) ……2 a 2 (z – a) + …
Then, let z ® a:
lim z ® a  
   d m - 1 
 / dz m - 1    {(z – a) m    f(z) } = (m – 1)! a - 1  
Where
bear in mind that   a - 1  
=   c - 1   seen earlier.
More
generally, we may write:
c - 1     =
1/  (m – 1)!  lim z ® a  
   d m - 1 
 / dz m - 1    {(z – a k) m    f(z) }
Examples:
1)Find
the residue for  f(z) =    4 / (1 - z)     
We have a simple pole (m=1) at z = 1.
Then
write:
Res
(f(z)) =  (z – a)  f(z) 
= lim z ® 1  (z – 1)   
[4 / (1 - z)]    
= 4/ -1 = -4
= 4/ -1 = -4
(2)    Find the residue for f(z)
=  1/ 1 – z
Again,
we have a simple pole at z = 1, so:
Res
(f(z)) =  (z – a)     f(z) 
= lim z ® 1      (z – 1)   
[1 / (1 - z)]      =
-1
3) 
We
have a fourth order pole (m = 4) at z = 0, and we know from the residue
formula:
Res f(z) =    c - 1     
= 1/ (m – 1)! lim z ® a d m - 1 / dz m - 1 {(z – a k) m f(z) }
= 1/ (m – 1)! lim z ® a d m - 1 / dz m - 1 {(z – a k) m f(z) }
Then:
Res f(z) = 1/ 3!  lim z ® 0  
   d 4 - 1 
 / dz 4 - 1    {(z) 4     ×  exp (z) / z 4  }
Res f(z) = 1/ 3!  lim z ® 0  
   d 3 
 / dz 3    { exp (z)} 
=
1/ 3!    lim z ® 0  
8  exp(2z) =   8/ 3! exp (0) =  8 / 6 = 
4/3
(4)
Find the residue of f(z) =   z 2
exp (z)/  (z – 3) 2    
At
z = 3
We
have a 2nd order pole, i.e. m = 2 so that;
Res
f(z) =  lim z ® 3  
d  / dz   {(z – 3) 2
 [z 2 exp (z)/  (z – 3) 2
]  } 
Res
f(z) = lim z ® 3     d    / dz      {z 2 exp (z)}
=
lim z ® 3     exp (z) [ z2 + 2z ] =    9 exp (3) + 
6 exp (3) 
= 15 exp (3)
= 15 exp (3)
Problems
for Math Mavens:
1)
Find the residue for f(z) =  3 exp
(z)/  z 4
Be
sure to specify the order of the poles before proceeding!
2)Find
Res f(z) for cos z/ z 5
3)
Find all the residues at those
singular points inside the circle  ÷ z  ÷     =   
2   
For:  f(z) =  
z 2    / ( z 4  - 1) 
(Hint:
remember your complex numbers!) 
 
No comments:
Post a Comment