1) Evaluate
the integral:   òC  (z + 1)   dz / (2z + 
i)
Solution:
A
simple (m=1) pole occurs at z = -i/2
Res
(f(z)) =  (z – a)   f(z)  =
lim z ® -i/ 2 (2z + i) [(z + 1) / (2z + i)]
lim z ® -i/ 2 (2z + i) [(z + 1) / (2z + i)]
Res
(f(z)) =   (z + 1)/ 2] z = -i/ 2  =   (-i/2 + 1)/ 2 =   ½ 
-   i/4
(Remember if f(z) has the form p(z)/ q(z) and a first order pole exists at z = z o, then Res f(z)  at z o  =
lim z ® z o p(z) / q'(z) where q'(z) is the first derivative)
 
lim z ® z o p(z) / q'(z) where q'(z) is the first derivative)
Then:
òC  (z + 1)  
dz / (2z +  i)  =  2 pi   (sum
of residues)
=  2 pi   (½ 
-   i/4)  =   pi -   (pi)2/ 2 =    pi   + p/ 2
2)
Consider Example (2) and obtain the integral if we have 
÷ z ÷ = 10 instead of ÷ z ÷ = 3/2
÷ z ÷ = 10 instead of ÷ z ÷ = 3/2
If
we now have  ÷ z ÷   =  10   
then both residues,  i.e.  for the simple and 2nd order poles can be
added since the singularities are now contained in the circle.
Then:
Sum
of residues =  e/ 16  - 5 exp (-3) / 16
=
e/16 -   5e -3/ 16  
So
that the re-evaluated  integral is now:
2
pi   (sum
of residues) = 2 pi   (e/16
-   5e -3/ 16 ) 
=  pi (e -  
5e -3)/8 
3)Evaluate
the integral:   òC    z   dz
/ (z2  - 2z + 2)2
Solution,    first rewrite:
f(z)  =   
z/  (z  - 1 + i)2 (z  - 1 -  
i)2
In
the upper half plane we need to obtain Res(f(z) for z = 1+i
For
which we have a 2nd order pole. 
Then:
lim z ® -1+i 
d/ dz  [(z  - 1
-  i)2    z/ 
(z  - 1 + i)2 (z  - 1 -  
i)2]
=  lim z ® -1+i 
d/ dz    [z/(z 
- 1 +  i)2  ]
And
from  the product rule for differentiating,  this yields:
2
+ a – 2z/ (z + a)3    for  a =    (-1
+ i)
lim z ® -1+i 
d/ dz    [z/(z 
- 1 +  i)2  ]
=   (1 + i) + (-1 +i) – 2(1 + i)/ [(1 + i) + (-1
+i)] 3
=   -2/ -8i 
= 1/ 4i  so that:
òC    z   dz / (z2  - 2z + 2)2   = 2 pi   (1/ 4i) = 
p/  2
 
No comments:
Post a Comment