
We
continue now looking at more examples of complex integration and application of
the residue theorem.
Example 1:
∫ -¥  ¥  (1 + x2 )  dx /
1 + x4  
Find
the residues at exp(pi/4)  and exp(3pi/4) 
and hence integrate the preceding:
Solution:
f(z)
= 1 + x2  / 1 + x4  
Now:  We note that 
1 + x4     =   0
when   x = (-1) ¼    
Or
the fourth root of (-1). The modulus of (-1) = 1 and the argument is p.  Therefore,
by de Moivre’s theorem:
(-1  + 0i) ¼     =   4Ö(-1) [ cos (p + 2kp/ 4) + i sin (p + 2kp/ 4)]
k=   0, 1, 2, 3…….
At
k= 0:     (-1) ¼      =  cis (p/4)  
=   exp (pi/4) 
At
k=1:   (-1) ¼      =  cis (3p/4)   
=      exp (3pi/4)  
(We’re not concerned with k=2, 3……Why?)
We
therefore take the semi-circular contour as shown in the graphic. So that:
òCR   f(z) dz  +  ∫ -R  R  f(x) dx 
=  2 pi  (sum
of residues inside C)
As R increases without bound we have:
∫ -¥  ¥  (1 + x2 )  dx /
1 + x4     = 
2 pi [Res f(z) at exp (pi/4) and exp (3pi/4) ]
2 pi [Res f(z) at exp (pi/4) and exp (3pi/4) ]
For
the case f(z) = p(z)/ q(z)   Then:
Res
f(z) z = a      = 
lim z ® a   [p(z)/ q’(z)]
Then
for z = exp (pi/4):
Res
f(z) z = exp pi/4       =  
lim z ® exp pi/4      1 + z2  /
4 z3     =
1
+  exp(pi/2) / 4 exp(3pi/4) =  1 + cis (p/2) / 4 cis (3p/4)
Res
f(z) z = exp pi/4       =   
1 + i /  4(- Ö2/ 2   + iÖ2/ 2  
)
=  1/ 2Ö2 (i+ 1/ i- 1) 
Rationalize
the denominator to get:  2i/ -2  =  - Ö2i/ 4
Then
for z = exp (3pi/4):
Res
f(z) z = exp 3pi/4       =  
lim z ® exp 3pi/4      1 + z2  /
4 z3     =
1
+  exp(3pi/4) / 4 exp(9pi/4) =  
¼
[exp(-3pi/4)  + 
exp(- 9pi/4)]
=  
¼ [ cis (-3pi/4) + cis (- 9pi/4)]
¼ [ cis (-3pi/4) + cis (- 9pi/4)]
Therefore:
∫ -¥  ¥  (1 + x2 )  dx /
1 + x4     = 
2 pi [Res f(z) at exp (pi/4) and exp (3pi/4) }
2 pi [Res f(z) at exp (pi/4) and exp (3pi/4) }
=  2 pi {- Ö2i/ 4   +  ¼ [
cis (-3pi/4)  + cis (- 9pi/4)]}
Problem
for Serious Math Mavens:
Obtain
the integral for:
 ∫ -¥  ¥    x  dx /
(x2   - 2x +
2)
 
No comments:
Post a Comment