Let f(z) be analytic on and inside a closed contour C as shown
below, except for a finite number of isolated singularities: z= a1, a2, etc.
which are enclosed by C.

Then:   ò C  f(z) 
dz =      2 pi    ån k = 1    Res f (a k) 
We now want to elaborate this a bit more by reference to the
diagram shown. In this case we consider the function f(z) is analytic inside
and on the simple
closed
curve C except at a
finite number of specified points: a, b, c, etc.  at which there exist residues:   a - 1  ,       
b - 1 ,  c - 1      , etc.
In which case we can write:
ò C  f(z) 
dz =   2 pi   [a - 1        + 
b - 1         
+  c - 1        + …………………….]
That is, 2 pi    times the sum of the residues at all the
singularities enclosed by C. To ensure this, one would respectively construct
circles C1, C2, C3 etc. as I have done with respective centers at a, b, c etc.
If we take care to do this properly then we can write:
ò C f(z) dz = òC1 f(z) dz + òC2 f(z) dz + òC3 f(z) dz + ..........
Where:
ò C f(z) dz = òC1 f(z) dz + òC2 f(z) dz + òC3 f(z) dz + ..........
Where:
ò C1  f(z) 
dz   =   2 pi   a - 1        
ò C2  f(z) 
dz  =  2 pi   b - 1        
ò C3  f(z) 
dz   =   2 pi   c - 1        
So that:
òC  f(z) 
dz =   2 pi   [a - 1  +  b - 1  +  c - 1   + ..] = 2 pi   (sum of residues)
Example
1:
Evaluate the integral:  òC   cot
(z)  dz
f(z) = cot (z)
For which: ò C  f(z) 
dz   =   2 pi   c - 1        
Re-write: f(z) = cot (z) = 1/ tan z
For which singularities occur at tan
z = 0 
Or: o, + p, + 2p,+  3p  etc.
Then Res f(z) =   1/ sec2 z ÷ z = + n p     =   
1/ (1/ cos2 z)
= cos2 z÷ z = + n p     =   
cos2 (np)   
And :  cos2 (np)    = 1  
at z =  (2n + 1) p)/ 2
Therefore:    c - 1  =  1,
and
  ò C  cot
(z)  dz 
=    2 pi   (1) = 2 pi   
Example 2:
Evaluate the
integral:  ò C  exp (z)  
dz  /  (z – 1) (z + 3)2
Where C is given by  ÷ z ÷    =  
3/2  
Solution:
Take the residue at the simple pole (z = 1) such that:
lim z ® 1 [ (z – 1) exp (z) / ( z - 1) (z + 3)2 ] =
exp(1)/ 16 = e/ 16
Take the residue at the simple pole (z = 1) such that:
lim z ® 1 [ (z – 1) exp (z) / ( z - 1) (z + 3)2 ] =
exp(1)/ 16 = e/ 16
The residue
at the 2nd order pole (z = -3) is:
lim z ® -3 d/ dz [(z + 3)2 exp (z) / ( z - 1) (z + 3)2 ] =
lim z ® -3 d/ dz [(z + 3)2 exp (z) / ( z - 1) (z + 3)2 ] =
lim z ® -3   [ (z – 1) 
exp (z)    - exp(z) / (z – 1 )2
 ]
   = - 5 exp (-3) / 16
The integral
is therefore:
ò C  exp (z)  
dz  /  (z – 1) (z + 3)2    
=  2 pi   a - 1   =   2 pi   (e/ 16)
(We do not
add the 2nd residue because it lies beyond the circle ÷ z  ÷    =  
3/2  )
Practice Problems:
1) Evaluate
the integral:   ò C  (z + 1)  
dz / (2z +  i)
2) Evaluate the integral:   ò C    z   dz
/ (z2  - 2z + 2)2
 
No comments:
Post a Comment