The Problems:
1) For the given cone of revolution (Example 2) write the corresponding Jacobian (matrix).
Solution:
J =
( cos u 2 , -u1 sin u 2 )
( sin u 2 , u1 cos u 2 )
(a .......................0 )
2) Find a parametric representation for each of the following:
a) Ellipsoid: x ( u1, u 2 ) = (a cos u2 cos u1 , b cos u2 sin u1, c sin u 2)
b) Hyperbolic paraboloid:
x ( u1 , u 2) = (au1 cosh u2, bu1 sinh u2, (u1 ) 2)
Solutions:
a) x 12 / a 2 + x 22 / b2 + x 32 / c2 - 1 = 0
b) x 12 / a 2 - x 22 / b2 - x 3 = 0
No comments:
Post a Comment