Monday, January 6, 2025

Revisiting Differential Geometry (Pt. 4): Parametric Angle Variables for Surfaces

 To deal with surfaces and curves on them we start with a real, single-valued vector function and parametric angle variables using superscripts such that we have:  u1 ,  2 , whence:

(1)               x ( u1 ,  2 )  =

{ x 1  ( u1 ,  2 ),  x 2 ( u1 ,  2 ) , x 3 ( u1 ,  2 ) }

With the two angular variables  u1 ,  2  defined in a bounded domain B of the u1  2 -plane   Then by equation (1) to any point ( u1 ,  2 )   in B  there is associated in  R 3  a  point  with position vector x (u1 ,  2). Then the point set in  R 3  obtained when u1 ,  2  vary is called a parametric representation of the set and u1 ,  2   are the parameters of this representation.

In these descriptions we will also make use of the Jacobian matrix of rank 2:


 J =

( x 1 / u1      x 1 / 2  ) 

( x 2 / u1      x 2 / 2 ) 

( x 3 / u1      x 3 / 2 ) 

Partial derivatives of x ( u1 ,  3 )  can then be denoted:

x 1   = ¶  x/  u1      And: x 13   = ¶ 2 x/  u1   u3          

Which can also be more generally denoted:

a  = ¶  x/  u1      

 And:

ab = ¶ 2 x/  ua1   u b3          

Or in the 2nd case:

 x ab = ¶ 2 x/  u a u b          

Note there are three determinants of 2nd order in the Jacobian J which bear components of the vector products , i.e. of the vectors:

x 1   = ¶  x/  u1        and  x 2   = ¶ x/  u2        

These are different from the null vector IFF  x 1  and x 2   are linearly independent vectors . 

The assumption that the matrix for Jacobian J is of rank 2 is thus the necessary and sufficient condition that said vectors are linearly independent.

Note the x 1 x 2 - plane can be represented in one of two forms, Cartesian:  

(i)                x ( u1 ,  2 ) =   (u1 ,  2,  0),   

or polar

(ii)              x ( u1 ,  2 ) = ( u1 cos 2 , u1 sin 2, 0), 

For which the respective matrices are:

(i) J =  

(1   ....0)

(0 ......1)

(0......0)

And (ii), 

 J =

cos u 2 , -u1  sin u 2 )

( sin u 2 ,  u1  cos u 2 )

(0 ....................    0  )

Recall the sphere can be obtained by extending the circle by one dimension ( x 2 ), i.e. to obtain:

x 3  = + Ö( r 2   -   x 1 2 -   x 2 2)

Depending on sign this is a representation of one of two hemispheres,  x 3  >  0  or   x 3  <   o. The parametric angular representation of the preceding can be expressed:

x ( u1 ,  2 )  =  (r cos u 2  cos u1, r sin u 2 sin u1 , r sin  u 2)

or writing out in terms of  x 1 ,  x 2 , x 3 .

x 1 = r cos u 2  cos u1,  x 2  =  r sin u 2 sin u1 

x 3 = r sin  u 2

The geometrical configuration is shown below:

    The similarity to the celestial sphere of astronomy will not be lost on many readers, i.e. the angular parameter u plays an analogous role to Right Ascension while  2  plays a role analogous to the zenith distance (z) which is related to the coordinate of declination ( d  = 90 - z). Via this analogy we can also see the corresponding Jacobian matrix at the poles is:


J =

(-r cos u 2  sin u1        -r sin u 2 cos u1)
(r cos u 2  cos  u1        -r sin u 2 sin u1)

(0 .......................r cos u 2)

 

Example 2: A cone of revolution with apex x= (0, 0 ,0) and with x 3 - axis as axis of revolution i.e.



Can be represented in the form:

a ( x 12 +   x 2 2) -  x 32    = 0  

And:   x 3    = + a Ö(x 1 2 +   x 2 2)

represents one of two graphics, x 3  >  o   and  x 3    <  0 of the cone depending on the sign of the square root.  In the case shown then we have;  x 3  = aÖ(x 1 2 +   x 2 2).  The parametric representation can be written:

x ( u1,  2 )  =  ( u1  cos u2, u1 sin u 2 , au 2) 

Note the curves u1  = const. are curves parallel to the x 1 x 2 - plane while the curves u1  = const. are the generating straight lines of the cone.


Suggested Problems:

1) For the given cone of revolution (Example 2) write the corresponding Jacobian (matrix).

2) Find a parametric representation for each of the following:

a) Ellipsoid:  x ( u1,  2 )   (a cos ucos u1 , b cos u2 sin u1, c sin u 2)

b)    Hyperbolic paraboloid:  

x ( u1 ,  2)  =  (au1 cosh u2,  businh u2,  (u1 ) 2)


No comments: