1)      Find the ion and electron gyrofrequencies for an ion and electron in solar plasma with a magnetic induction (field strength) of B = 0.0001 T.
Solution:   The ion gyrofrequency will be:
Ω i  = qB/ m i  =   [(1.6 x 10 -19  C) (0.0001 T) ]/ 1.7 x 10 -27  kg
Ω i   =  9.4 x 10 3 /s
 And the electron gyrofrequency is:
 Ω e  = qB/ m e  =   [(1.6 x 10 -19  C) (0.0001 T) ]/ 9.1 x 10 -31  kg
Ω e  =  1.7 x 10 7  /s
2)     If the perpendicular velocity component ( v⊥) is 105  m/s for the electron, find its Larmor radius and its gyro-period.
 r = (10 5  m/s) / 1.7 x 10 7  /s   =     0.0056 m or:  0.56 cm
Gyro-period: T = 2 p  / Ω e  =   2 p / 1.7 x 10 7  /s   =  3.5 x 10 -7  s
3)     Thence or otherwise obtain the gyration energy in eV. 
(1.6 x 10 -19  J = 1 eV)
 Gyration energy E = m e  (v⊥)2/ 2 =  
(9.1 x 10 -31 kg) (10 5 m/s) 2 / 2
(9.1 x 10 -31 kg) (10 5 m/s) 2 / 2
E =    4.5 x 10 -21  J  
Or: in Electron volts:  
 (4.5 x 10 -21  J )/ (1.6 x 10 -19  J/eV) = 0.028 eV
4)     Find the guiding center positions for the electron referenced above (previous problems) if t = T/4.
 Guiding center positions:
 x – xo =   r sin (Ω e t)   =    (0.0056 m)  sin (Ω e  T/4) =  
= (0.0056 m) sin [(1.7 x 10 7 /s) (3.5 x 10 -7 s/ 4)] = 0.0056 m
y – yo =   r cos (Ω e t)   =    
(0.0056 m) sin [(1.7 x 10 7  /s) (3.5 x 10 -7  s/ 4)] = 0
 To see how these values can be, note that: (Ω e T)   = 6.28 rad = 2p rad
 So:  (Ω e T/ 4)   =1.57 rad =  p  / 2
 But:  sin (p /2) = 1 and (cos p /2) = 0 
 So the value for x – xo is simply dictated by the value for  r
 
No comments:
Post a Comment