Thursday, December 11, 2025

The Perturbed 2-Body Problem And The Role Of The Delaunay Variables In Solutions

 

                             Perturbation diagram to for Delaunay variable analysis


The perturbed two-body problem begins by mathematically defining the perturbation in terms of the quantities in the triangle above. This actually shows  how the presence of a third body (say m 3  in the accompanying diagram) perturbs or disturbs the motion of m 2. which is in orbit about a central mass m 1. (And of course: m 1  >>  m 2  )  Then we can write for the perturbation (N.B.  m  is the reduced mass, =   1/ (1/m 2   + 1/ m 3):

r'' =  -   / r3   -   G m 3  ((r -  r 3  /  D 3  ) +   3   /   r  3

=    -   / r3   -  Ñ R

Where:   Ñ R  =   m 3  (r -  r3  /  D 3  ) +   3   /   r  3

And:  R  =   - m 3  (1/  D    +   2 ·  r 3   /   r  3)

Then, adding the perturbations we get:

r'' = -   / r3   -  Ñ R  =  Ö( x'' 2  +  y'' +  z'' 2  )

For which a set of coordinates: q 1,2,3   =  x, y, z are defined, and a set of momenta p 1,2,3   =  x', y', z'    associated with them.  Hence:

dq i  / dt  =  H  /  p i        and:     dp i  / dt  = - H  /  q i 

Leading to the Hamiltonian:  

 =   ½ å 3 i=1  P i 2    -  m / r  -  R

If this form exists, then a, e, i  etc. must be functions of the time and also further computations may be needed, i.e.


But instead of functions with a, e, i one can make use of the Delaunay variables: L', G', H', respectively.
 Where:

L'  =   H  /  ℓ 

G' =     H  /  g 

H’  =  -    H  /  h

These Delaunay variables are defined by the equations:

ℓ  =   n(t  - T)

L =  Ö(m a)

G  =   L    Ö (1 -   e 2)

H =   G cos i

g   =  w

h  =   Ω

Where a is the orbit's semi-major axis,  Ω  is the longitude of the ascending node,  is the arguments of the perihelion, e is the eccentricity of the orbit and i is the inclination of orbit to the ecliptic plane.

In this case, the previous Hamiltonian: 

 =   ½ å 3 i=1  P i 2    -  m / r  -  R

Transforms to:

H  (L,  ℓ  )  =   -  m 2 / 2 L 2  -  2  3    {1/  D (L,  ℓ  )  +   r ·  r 3   /   r  }

 A huge simplification arrives  if R = 0., which then reduces to the 2-body problem, which we've examined in previous blog posts.   Note that R in the second Hamiltonian is expressed:

R   =   2  3    {1/  D (L,  ℓ  )  +   r ·  r 3   /   r  }

Now, for the case at hand (consult diagram), we may write:

D 2     =  r  2   +   r  2    -   2 ·  r 3  cos S

 And:  r ·  r 3  =   r   r 3  cos S

Assume now that 3  is greater than r (perturbing an inner planet or body by an outer one):

1 /D      =  1/r [ 1 + (r / r 3)  2  -  2 (r / r 3)  cos S] 1/2

Then the above can be rewritten as the sum:

½ å ¥ r= 0  (r / r 3i  P i 

=   1/  r 3  [ o   +   (r / r 3)    + (r / r 3)  2     +  ...]

The P i   are functions of the angle S and are called Legendre polynomials.  In this case, the first three may be written:

o   =   1,      P 1     =   cos S,    P 2     =   ½ ( cos 2 S   -   1) 


Suggested Problem:

  Estimate the magnitude of the error in the modified Hamiltonian H  in terms of k and   m 3.  (You can take  m =  mass of Jupiter,  m = mass  of Earth, and a =  semi-major axis of Jupiter).   Make sure your reference Hamiltonian conforms with these.

No comments: