1) Find all ideals I of the integer class Z 12 and in each case compute:
Z 12 / I
I.e. find a known ring to which the quotient ring is isomorphic
Solutions:
I 1 = [0] , Z 12 / I 1 ~ Z 12
I 2 = {0, 2, 4, 6, 8, 10; Z 12 / I 2 } ~ Z 2
I 3 = {0, 3, 6, 9; 10, Z 12 / I 3 } ~ Z 3
I 4 = {0, 4, 8; Z 12 / I 4 } ~ Z 4
I 5 = {0, 6; Z 12 / I 5 } ~ Z 5
I 6 = Z 12 , Z 12 / Z 12 } ~ 0
2) Find a subring of the ring Z + Z which is not an ideal of Z + Z
Solution:
{n, n | n Î Z}
3) Give all units in each of the following rings:
a) Z b) Z + Z c) Z 5 d) Q
Solutions:
a) 1, -1
b) (1,1), (1, -1), (-1, 1), (-1, -1)
c) 1, 2, 3, 4
d) all non zero q Î Q
4) Let S be a commutative ring with I an ideal a Î S, with (a) = {ja : j Î S},
Prove that S is closed under + and ·
Soln.
We assume x Î (a), y Î S,
Then x = ja for some j Î S, So: y · x = y(ja)= (yj) a Î a And we can write the following formulation: If x,y Î (a) then x + y Î (a),
Also: x = ja for some j Î S, then x - y Î (a) and further, y = j' a for some j' Î S then x· y Î (a)
Then for (+) closure: x + y = ja + j'a = (j + j') a Î (a)
For (· ) closure: x · y = ja · j'a = (j - j') a Î (a)
And for subtraction: x - y = ja - j'a = (j - j') a Î (a)
5) Take S as the set of integers, Z. Let the ideal I = (2) so that S / I = Z 2 Thence or otherwise, find:
a) [0] b) [1] c) S/ I = Z 5
Solns.
Take S = Z. I = (2) so that S / I = Z 2
We have:
a) [0] = {0, + 2, + 4, + 6…..} = I = (2)
b) [1] = {1, 3, -1, 5, -3, 7….}
c)If S / I = Z 5
S/I = {[0], [1], [2], [3], [4]}
No comments:
Post a Comment