Thursday, December 4, 2025

Development of the Mathematical Ballistics Model (4)

 We left off with equation (E) from Part 3:

r =  k 1 2 /c -  k cos (q  + k 3)

Where k 3 is a new constant based on:

sin ( q  + K 3)  =   cos ( q  + K p/2) = cos (q  + k 3)

Equation (E) is the geometric solution of the system of differential equations (A) and gives r as a function of q. This equation is the polar form of a conic with one focus at the origin.  There are three arbitrary constants that have been identified in this equation: k 1 ,  k 2 and k 3. And which we will now evaluate.

We begin by differentiating (E) with respect to t, then evaluating the derivative at   q =  0:

r' o  = k 1 2 k sin ( q)/[ c -  k cos ( q)] 2

Since then: Vo   =  Ö r 2o   + r2 q' o2

Vo   =  r q' o

We have from eqn. (B) in Pt. 3:

  r-2  q'  =  k 1 = const.

So:  k 1 =  r o (r q')  =  r o V   

The value for k 2 can now be found by letting q =  0 in equation (E) from Part 3, so:

r o =  k 1 2 /c -  k 2  =  r2 o V2 /c -  k 

k 2 c -  ro V2 o

Before substituting the constants into equation (E) it is useful to define a dimensionless quantity which simplified the expression.  This is:

 p = 1   -  ro V2 o  /c

The solution of (E) then becomes:

r =   (1 -  p) ro  / 1 - p cos q

Recall from analytic geometry, e.g.


that the eccentricity of the conic is the coefficient  (- p) of the cos term and it determines the character of the conic. We are now in position to compare the geometric characteristics of the trajectories, i.e.

ELLIPSE { Apogee at q =  0,  0 < p < 1

               { Circular path:  p = 0  or  Vo   =   Ö  c/ r o


                      {Perigee at q = 0,  -1 < p <  0

PARABOLA  { p=  -1  or:   Vo   =   Ö  2c/ r o

HYPERBOLA  { p   < -1  or:   Vo   >   Ö  2c/ r o                      

Some cases of interest are shown in the diagram below:



Incorporating solutions involving t - the time - leads to more detailed results.  For example, the magnitude of the speed can be obtained from:

 Vo   =  Ö r' 2   + r2  q' 2

The magnitude of the velocity vector in terms of  can be obtained from:

        x'/ y'      =  sin q / p  - cos q

direction of the velocity vector in terms of   will be given by:

 tan  f  =  p sin q/  1 - p cos q


The path angle can be obtained from the appropriate velocity diagram, starting with the one for our basic conventions (See Oct. 7 post. Fig. 1).  Then we have from the applicable geometry:




No comments: