1)Given the situation shown below for a particle in plasma:
And: v o = v xo x^ + v yo y^ (for initial velocity)
Solve the equation of motion: F = q(E + v X B)
Solution:
m dv/dt = q(E + v X B)
v x = qB (v y)/m + q E
x /m
v y = - qB (v x)/m
Or:
v y = - qB/m [qB (v y)/m + q E
x /m]
= - W e 2 (v y) - W e 2 (E x) / B
v x =
- W e 2 (v x) - W e 2 (E x ) / B
2) (a)If the perpendicular velocity component ( v⊥) is 105 m/s for an electron in a plasma, find its Larmor radius, gyration energy and its gyro-period.
Solution.
Larmor
radius: r = m/ q [v⊥ / B] = v⊥/ (qB/ m e) = v⊥/ Ω e
r = (10 5 m/s)
/ 1.7 x 10 7 /s = 0.0056
m or: 0.56 cm
Gyro-period: T = 2 p / Ω e = 2 p / 1.7 x 10 7 /s
= 3.5 x 10 -7 s
Gyration energy
E = m e
(v⊥)2/ 2 =
(9.1 x 10 -31
kg) (10 5 m/s) 2 / 2
E = 4.5 x 10 -21 J
= 0.028 eV
(b) Find the guiding center positions for the electron referenced in (a) if t = T/2.
Then: T/2 = 2 p /2 Ω = p / Ω
Bear in mind the gyration energy:
E = m m B = m/2 (E/B) 2,
Guiding center positions:
x – xo = r sin (Ω e t) = (0.0056 m) sin (Ω e p / Ω e ) = (0.0056 m) sin p
= (0.0056 m) 0 = 0
y – yo = r cos (Ω e p / Ω e )
=
(0.0056 m) cos p = - 0.0056 m
No comments:
Post a Comment