1) Consider two vectors A, B spanning a subspace of R 4 where:
A = (1, 2, 1, 0) and B = (1, 2, 3, 1)
Find: A/ ‖A ‖ and: B/ ‖A‖
Solution: For A we have the orthonormal basis:
A/ ‖A ‖ = (1, 2, 1, 0)/ Ö{1 2 + 2 2 + 1 2 + 0 2 } =
(1, 2,
1, 0)/ Ö 6
For B we have:
B/ ‖A‖ = (1, 2, 3, 1)/ Ö {1 2
+ 2 2 + 3 2 + 1 2} =
(1, 2, 3, 1)/ Ö 15
2) Given x'i = x i + b i
And: x i =
(2….1…..0)
(3….-5.…6)
(-7….0… 4)
Find the new coordinates x'i if :
b i =
(1….2…..1)
(2….1.….3)
(3….2… .1)
Write out the matrix elements for a ik .
Solutions:
The key to the solution is noting - from the original post text:
A(= a ik ) equals the Kronecker delta (unit matrix) so then the new Cartesian coordinate system is given by:
x'i = x i + b i i= 1, 2, 3.....
Then we know immediately the matrix for a ik is:
(1….0…..0)
(0….1…..0)
(0….0… .1)
And the solution follows from simple Mathcad matrix operations summarized below:
For which the final - new - coordinates after transformation become:
(3….3…..1)
(3….-4.…9)
(-4….2… 5)
No comments:
Post a Comment