Wednesday, April 13, 2022

Solutions To Differential Geometry Problems (Part 1)

 1) Consider two vectors AB spanning a subspace of   4   where:

= (1, 2, 1, 0) and = (1, 2, 3, 1)  

Find:  AA ‖    and:  BA

Solution: For A we have the orthonormal basis:

A/ A = (1, 2, 1, 0)/ Ö{1 +  2  + 1 +  0 } =

(1, 2, 1, 0)/ Ö 6

For B we have:

B/
A = (1, 2, 3, 1)/ Ö {1 2 + 2 2 +  3 2 + 1 2} =

 

(1, 2, 3, 1)/ Ö 15


2)  Given  x'i =    x i  +   b i

And:  i   =

(2….1…..0)

(3….-5.…6)

(-7….0… 4)


Find the new coordinates x'i   if :
  b i  =

(1….2…..1)

(2….1.….3)

(3….2… .1)

Write out the matrix elements for  ik .


Solutions:

The key to the solution is noting - from the original post text: 
A(ik ) equals the Kronecker delta (unit matrix) so then the new Cartesian coordinate system is given by:

x'i =    x i  +   b i             i=  1, 2, 3.....

Then we know immediately the matrix for ik is:

(1….0…..0)

(0….1…..0)

(0….0… .1)


And the solution follows from simple Mathcad matrix operations summarized below:



For which the final - new - coordinates after transformation become:

(3….3…..1)

(3….-4.…9)

(-4….2… 5)

No comments: