Tuesday, January 27, 2026

The Quantitative Formulation Of Nonlinear Alfven Waves: Part 2 a (Derived from two- fluid equations)

 We now look at the case of non-Linear Alfven waves derived from two- fluid equations:

 We use wave frame so that: / t  =  0

 Also:

1)    Continuity equation: / x (ns, Vs ) = 0 

2)    Momentum eqn.  Vs / x (Vs ) = qs, /  ms (E + v  x B)


Vs   Vs / x  =  qs, //ms  [E + V x B]

 

3)    / x  (B) = 4 p å qs, Vs  n s,

 

4)   / x  ·  (B) = 0

 

(5) / x  ·  (E) = 4 p å qs,  n s,


We consider first the solution in 1-dimension. Choosing the field to have a geometry such that:


B =  [ B 0 ,  B y  (x), B z  (x)]

And:   E =  (E(x), 0 , 0)

Vs    =   [Us (x),  Vs  (x) ,  Ws  (x)]

Assuming exact neutrality:   n i (x) =  n e (x)    =    N(x)

But:  E / x  =  0    So no E

We have then:

(i)   (ns,  U s ) / x  =  0     so:  ns U s   = const.   (Or:  Ñ · J  = 0 )

(ii) m s  U s  (d U s  / dx)    = qs,  (Vs  B z -  Ws B y )

(iii) m s  U s  (d V s / dx)    = qs,  (Ws  B 0 -  Us B z )

(iv) m s  U s  (d W s / dx)    = qs,  (Us  B y -  Vs B 0 )

 

Further:   Ui =  U e


dB y / dx  =   4 p å qs, Ws  n s

dB z / dx  =   - 4 p å qs, Vs  n s


Now multiply:    å ns      by Eqn. (ii)

Þ   å ns  ms Us   (d U s  / dx)    =    å n s qs, (Vs  B z -  Ws B y )


Þ  F  å ms (d U s  / dx)    =    å n s qs, Vs  B z    - å n s qs,  Ws B y


Then:   

F  m z  (dU  / dx)    =  - 1/4 p  B z (d B z / dx) - 1/4 p  B y (d By / dx)

 

Þ   d / dx  (F  U ) =  - 1/8 p   d/dx  (B z  2  +   By 2 )

 

F  U  +   (B z  2 +   By  2 ) /8 p     =    const.  = P

 

Where the first term on the left is the ram pressure and the 2nd term is the magnetic pressure.

To be continued...

No comments: