Suppose u is a function of 3-space: u = u(x, y, z)
We can write the Laplacian:
Ñ 2 u = ¶ 2 u/ ¶ x2 + ¶ 2 u/ ¶ y2 + ¶ 2 u/ ¶ z2
The configuration used is shown below:

For which we propose conditions:
u (0, y, z) = u (p , y, z)
u (x, 0 , z) = u (x, p , z)
u (x, y, p) = 0
I.e. we specify u to be some distribution of charge in a volume, say a cube.
Proceeding: Let
u(x, y, z) = X(x) Y(y) Z (z)
Þ
X''/ X + Y''/Y = - Z''/Z = c 1
Þ
X''/ X = (c 1 - Y''/Y) = c 2
Þ
X''- c2 X = 0 And: Y' - (c 1 - c 2 )Y = 0
And: Z'' + c 1 Z = 0 (write: c2 = - n 2 n ≠ 0 )
X' (x) = A cos nx + B sin nx
u(0, y, z) Þ X(0) = 0 Þ A = 0
So: X (x) = B sin nx
For y: Y(y) = C cos my + D sin my
Further: u (x, 0 , z) = 0 Þ Y(0) = 0 Þ C = 0
Then: Y(y) = D sin my
c 1 = - n 2 - m 2 = - ( n 2 + m 2 )
So that for Z'':
Z'' - ( n 2 + m 2 ) Z = 0
Z(z) = E exp (Ö( n 2 + m 2 ) Z + F exp (- Ö( n 2 + m 2 ) Z
Thence: u (x, y, p) = 0 Þ Z (p) = 0
Z (z) = E exp (az) + E exp (- az) = 0
No comments:
Post a Comment