Problem:
Apply the matrix method for the same location in the example problem but for a sidereal time ST = 12 h 28m. Apply to the case of the planet Mars which is also visible at the same local time but at position: RA = 10h 28m, and d = +12 o 51’.
Solution:
The sidereal time (ST) is given as: 11 h 28 m
The new Right Ascension is 10 h 28 m
Next, we change the new Right Ascension to hour angle using:
h = ST - RA
So: h = 11 h 28 m – 10 h 28 m = 1h 00m
This is then converted into degrees, using the fact that there
are 15 degrees/ hr. So h = 1h 00m/15 degrees/ h
So: 1 h 00 m = 15 o.0
Perform the matrix operations in the specific order:
(x)
(y)
(z) A,a = R3(-180o) R2(90 - lat.) (XYZ(h, d))
(y)
(z) A,a = R3(-180o) R2(90 - lat.) (XYZ(h, d))
Where:
R3(180) =
(cos(180)..........sin(180)..........0)
(-sin (180)...... cos(180)...........0)
(0 ....................0.......................1)
(cos(180)..........sin(180)..........0)
(-sin (180)...... cos(180)...........0)
(0 ....................0.......................1)
Therefore: R3(-180) =
(-1 0 0)
(0 -1 0)
(0 0 1)
(-1 0 0)
(0 -1 0)
(0 0 1)
And: R2(90 o - lat.) =
(sin lat. 0 - cos lat.)
(0 1 0 )
(cos lat. 0. sin lat.)
For which we have:
(sin lat. 0 - cos lat.)
(0 1 0 )
(cos lat. 0. sin lat.)
For which we have:
sin (lat.) = sin (25.o 75)= 0.434
cos (lat.) = cos (25.o 75) = 0.900
Thence, R2(90 o - lat.) =
(0.434 0 -0.900 )
(0 1 0 )
(0.900 0 0.434 )
cos (lat.) = cos (25.o 75) = 0.900
Thence, R2(90 o - lat.) =
(0.434 0 -0.900 )
(0 1 0 )
(0.900 0 0.434 )
Finally:
(x)
(y)
(z) h, d =
(cos d cos h)
(cos d sin h)
(sin d - )
where: d = +12 o 51’ = 12. o 85
sin (d) = sin (12 o 85) = 0.28
cos (d) = cos (12. o 85) = 0.960
cos h = cos (15 o.0) = 0.966
sin h = sin (15o.0) = 0.259
Assembling the foregoing into the applicable matrix:
(0.96 0.966)
(0.96 0.259)
(0.28 .......... ) =
(0.927)
(0.249)
(0.28)
Whence:
(0.96 0.259)
(0.28 .......... ) =
(0.927)
(0.249)
(0.28)
Whence:
R3(-180 o) R2(90 o - lat.) (XYZ(h, d)) =
=
(-0.150)
(-0.249 )
( 0.956 )
(-0.150)
(-0.249 )
( 0.956 )
The last element in the column yields the altitude, so:
a = arc sin(0.956) and a = 72.o 9
a = arc sin(0.956) and a = 72.o 9
Meanwhile, the azimuth A =
arc tan (y/x) = arc tan (-0.249/ -0.150) = 1.66
Therefore: A = arc tan(1.66) = 58. o 96
REM: You must convert radians to degrees (by multiplying by 57.3 deg/rad) in each case!
No comments:
Post a Comment