Soln. We have, for the three core parameters -
T = Tc q , q = ( r / r c )1/n And q = (P/ Pc ) (1+ 1/n)
At the interface (core-radiative boundary) one finds: q = 0. 7839768
Then, for the (dimensionless) core temperature: t c = t / q
And, since 0.6969 = t c q = t c (0.7839768) then: t c = 0.8876
The dimensional form is: T = Tc q
antilog (7.1643)  =   T   =   1.46  x 107  K
And:   Tc      =   T  /   q
For which we set up the ratio: 
(0.6969)/  / (0.8876) =  (1.46  x 107  )/   Tc 
Whence:  Tc     =   (1.46  x 107  ) (0.8876)/  (0.6969)  = 1.86  x 107  K
Take log T = log (1.86  x 107  )  = 7.2695
Which is the core temperature log value we find at r /R  = 0.0, i.e., See Table in Part 1
For core density:
q  = (  r / r c )1/n    
Where:   The polytropic index n can be defined:   n = 1/ (g   - 1)
where g is the ratio of specific heats. (g = C p / C v )
In a non-relativistic limit one will have g = 5/3 and
n = 1 / (5/3 - 1) = 1/ (2/3) = 3/2
where g is the ratio of specific heats. (g = C p / C v )
In a non-relativistic limit one will have g = 5/3 and
n = 1 / (5/3 - 1) = 1/ (2/3) = 3/2
Then write the core density as:   r c    =    r / q 3/2
Now, take  q  =   0.7839  SO:   q 3/2    =   0.6941
Since we have, at r/R = 0.172, log r = 1.4033   then
antilog (1.4033)  =   r   =   25.31 g/ cm3
Therefore:  r c    =    r / q 3/2  =   25.31 g/ cm3 / 0.6941
And:     r c    =   36.46   g/ cm3 
Now, take log  (r c  ) =   1.5618
Which is the density log value we find at r /R  = 0.0, i.e. the core (See Table in Part 1)
For core pressure, we have:  q =   (P/ Pc ) (1+ 1/n)
Since:  q    =  (p/ p c ) (1+ 1/n)     and n = 1.5 (assigned polytropic index - see top of Lane-Emden function table)
Then: p c = p / q 5/2 and q 5/2 = 0.5441
Then: p c = p / q 5/2 and q 5/2 = 0.5441
And, since we have, from the model table,  at r/R = 0.172, log P = 16.6770   then
antilog (16.6770 )  =   P = 4.754  x 1016    dyne/ cm 2
Therefore:     P c   =   P /   q 5/2 =  (4.754  x 1016    dyne/ cm2 )/  0.5441
P c   =   8.737  x 1016    dyne/ cm2 
and the log is: 16.9414 or the value shown at r/R = 0.0 (the core)
 
No comments:
Post a Comment