2) Do the first two radiative envelope computations for temperature, density and pressure, i.e. at radial fractions r/R = 0.183 and r/R = 0.200.
Soln. (A) At r/ R = 0.183 And we have: U = 2.562 and V = 1.389
r = 9.800 x 1010 cm (0.183) = 1.793 x 1010 cm
Mr/M = 0.172 so
Mr = 3.970 x 1033 g (0.172) = 6.83 x 1032 g
density: 
 r   =     UMr/4p r3
=  [(2.562) (6.83  x 1032  g)]/ 4p (1.793  x 1010  cm) 3
r  =   24.16  g/ cm 3        log   r  = 1. 3831
Pressure:
P   =      G  r Mr/ V r
=  [(6.67 x  10-8 dyne-cm 2/ g.2)  (24.16  g/ cm 3 )(6.83  x 1032  g)/   (1.389)(1.793 x 1010  cm)
P   =  4.417  x 1016    dyne/ cm 2
log P   =   16.645
 Temperature:
T = t  m  (H/R) (GM/r) 
log t = - 0.15695  so t (dimensionless T) =  0.6969
T =  (0.6969) [m  (H/R) (GM/r) ]      (for  m  = = 0.64,   H  = 1.672  x 10-24)
So:  
T =   1.417   x 107  K  and log T  = 7.1516
Soln: (B)
At r/ R = 0.200   And we have: U = 2.450  and V = 1.684
r = 9.800 x 1010 cm (0.200) = 1.960 x 1010 cm
Mr/M = 0.217 so
Mr = 3.970 x 1033 g (0.217) = 8.61 x 1032 g
r = 9.800 x 1010 cm (0.200) = 1.960 x 1010 cm
Mr/M = 0.217 so
Mr = 3.970 x 1033 g (0.217) = 8.61 x 1032 g
density: 
 r   =     UMr/4p r3
= 
[(2.450) (8.61  x 1032  g)]/ 4p (1.960  x 1010  cm) 3
r  =   22.31  g/ cm 3        log   r  = 1. 3485
Pressure:
P   =      G  r Mr/ V r
=  [(6.67 x  10-8 dyne-cm 2/ g.2)  (22.31  g/ cm 3 )(6.83  x 1032  g)/   (1.684)(1.96 x 1010  cm)
P   =  3.884  x 1016    dyne/ cm 2
log P   =   16.5893
 Temperature:
T = t  m  (H/R) (GM/r) 
log t = - 0.19200  so t (dimensionless T) =  0.6426
T =  (0.6426) [m  (H/R) (GM/r) ]      (for  m  = = 0.64,   H  = 1.672  x 10-24)
So:  
T =   1.346   x 107  K  and log T  = 7.1291
3) Estimate the uncertainty in the core radius as a consequence of the 'fuzziness' of the interface parameters.
The percentage uncertainty can be computed as:
D  (  r c  )   =  100%(0.172 - 0.148) / 0.172   =  0.024(100%)=   2.4 %
 
No comments:
Post a Comment