1) Rewrite the DE below with
differential operators:
5 d5y/
dt5 - 10 dy/dt –25y = 0
Solution:
5
(D t y) 5 -
10 (D t y)
–25y = 0
2) Rewrite the DE below in standard derivative form and
solve:
(D x y)
= 3x2 - 1
Soln: Rewrite as: dy/dx = 3x2 -
1
So:
dy = (3x2
- 1 ) dx
Integrate: ò dy
=
ò
(3x2 - 1 ) dx
y
= 3x3 / 3
- x + C = x3
- x + C
3) Does (D x y) 2 = D 2 x y ?
Explain.
No!
Because the first defines the nth derivative, i.e.
(D x y) n = dn y / dxn
So:
(D x y) 2 = d2 y/ dx2
But the 2nd defines the
square of the derivative, i.e.
D 2 x y
= (dy/dx) 2
4) Evaluate each of the following:
i)
(D x y) (ln e x /
1+ e x)
Ans. 1/ (1+ e x)
ii) (D x y) ½ ( e x
- e -x)
Ans. ½ ( e x - e -x)
ii)
D-1 ( 11 x2 )
Ans. 11 x3 / 3
iv) (D x y)
( e x ln x)
Ans. e x
ln x + e x / x
No comments:
Post a Comment