Monday, June 12, 2023

Obtaining The Electromagnetic Wave Equations From Maxwell’s Equations

 

EM wave propagating through empty space

In general, Maxwell’s equations will be expressed in vector form:

i)  Ñ X H  =  J    + D / t     (A current density J arises from a magnetic field)

ii)               Ñ X E  =  - B / t       (A magnetic field can arise from an electric field)

iii)             Ñ · B  =  0     (There are no magnetic monopoles)

iv)             Ñ · D  =  r            (Charges are conserved)

In addition, there are three “constitutive relations” that allow any of the above vectors to be re-cast in slightly different forms:

v)  D  =   e E

vi)  B =  m H

vii) J  = s E

In the equations above, H represents the magnetic field intensity, B is the magnetic induction, E the electric field intensity, D the displacement current, and J is the current density. The constants, e  and m, denote the permittivity and the magnetic permeability – each for media. In vacuo, the constants used are: e 0  and m 0 and the speed of light can be expressed:

 c =  1/ Öe 0  Ö m 0  .

An important aspect of Maxwell’s equations is being able to derive the assorted wave equations.  This can be accomplished in one of two ways:

a)from Maxwell’s differential equations (as given above)

Or b) from the integral equations:


1)  E d =   -  d Fm / d t   =  - ò òS  B / t  dS

2)  B d =  moεo  d FE / d t  = moεo  ò òS  E / t  dS  

Where  Fm  is the magnetic flux (i.e.  BA)  and FE is the electric flux (i.e. .   FE = EA) . Differentiating each of the above for one dimension (e.g. x) yields):

1’)  E / x       =   - B / t 

2’)   B  / x       =   -  moεo  E / t 

We then take the derivatives for (1’) and combine with those for (2’) and get:

2E / x2 = - / t  (B / x) =

 -  / t  (-  moεo  E / t )

And:

2B / x2 =

 - / x  (B / t) =  -  / t  (-  moεo  B / t )

From which two wave equations follow:

2E / x2  =   moεo  2 E / t2

2B  / x2  =   moεo  2 B / t2

If we compare the preceding to the generic wave equation, i.e. for propagation of transverse waves, say on a string, we find:

2y/ x2  =   1/ v2  2y/ t2  

Where v is the wave velocity. For the Maxwell wave equations, however, we have v = c. And hence we can equate:

1/ c2    =  moεo    

c 2   = 1/  moεo    and: c =  1/ Ö( moεo  )

So that c = 2.99792  x 108    m/s 

Which is the velocity of light in vacuo.

One can also obtain the wave equations from the Maxwell differential (vector) equations. For example, take:

Ñ X H  =  J    + D / t    

Take  the current free (J=0) case and we know: 

D  =   εo E    and     B =  mo H

Take  the curl of both sides of the vector equation in H:

Ñ X  Ñ X H  =      Ñ X  (D / t)

And:

Ñ X  (D / t)  =   Ñ X (εo  E / t )

 = εo  [Ñ X (E / t )]

But:

Ñ X (E / t)  = - 2 B / t2

Where:

 - 2 B / t2    =  -  mo 2 H / t2

Whence:

Ñ X  Ñ X H  =    εo (-  mo 2 H / t2) 

= -mo εo (2 H / t2) 

But by a vector identity:

Ñ X  Ñ X H  =    Ñ · Ñ ·H -   Ñ 2 H

But:   Ñ ·H =    1/ mo (Ñ ·B) = 0

So:   -   Ñ 2 H   =    -mo εo (2 H / t2) 

Or: Ñ 2 H   =    mo εo (2 H / t2) 

Which is one of the wave equations in terms of H.

Writing all the component wave equations  out:

2H x  / x2  =   moεo  2 H x / t2

2H y  / x2  =   moεo  2 H y / t2

2H z  / x2  =   moεo  2 H z / t2


Suggested Problem:

Starting with the Maxwell vector equation:

Ñ X E  - B / t

Derive the wave equation in E.


No comments: