
1)
∫ -¥  ¥    sin x dx
/ (x2   + 2x + 4)
In
terms of f(z) we can write:
f(z)=  exp(iz)  
dz / (z2  - 2z + 4)
so
the integral becomes: 
∫ -¥  ¥    exp(iz)  
dz / (z2  - 2z + 4)
Factor
f(z) to get:
exp(iz)   dz / (z2  - 2z + 4) =   
exp(iz)/ (z + 1 - iÖ3) (z + 1 + iÖ3)
Then
singularities (poles ) occur at:
z=
-1 + -iÖ3   and z = -1  -iÖ3
Therefore:
Res
f(z) =  lim z ® 1+iÖ3  
    [exp(iz)/ (z + 1 + iÖ3)] 
=  exp i(- 1+ -iÖ3)/  2iÖ3  
=   exp(-i) exp(-Ö3) / 2i Ö3   exp (-Ö3)
But
recall exp (-i) = sin(-1) =  -sin
(1)  so that:
Res
f(z) = - sin(1)/ 2i Ö3   exp (-Ö3)
Then:
∫ -¥ ¥ exp(iz) dz / (z2 - 2z + 4) =
2
pi [- sin(1)/ 2i Ö3   exp (-Ö3)] 
=    -pi [- sin(1)/ Ö3  
e-Ö3  ]
=  ∫ -¥  ¥    sin x dx
/ (x2   + 2x + 4)
Note:
this soln. is for  the upper half plane.
To modify the development for the case where the singularity is in the lower
half plane, or m < 0 (i.e. m = -i) then we have: 
∫ -¥  ¥    exp(im
x)  f(x) dx  = - 2 pi å (Res)
(See e.g. the accompanying graphic. Note that  in the lower graphic, that should be - i Ö3   along the Im -axis)
2)  ∫ -¥  ¥    cos x dx
/ (x4     +  1)
To
obtain singularities:
x4     +  1
= 0   or 
x4     =  
-1
Then:
x =   (-1)1/4 = (-1 + 0i)
1/4
=   4Ö1 [cos (p + 2kp/ 4) + isin((p + 2kp/ 4)]
For
k= 0:  
(-1)1/4
=   cis(p/ 4) =  exp (ip/ 4)
For
k=1:
(-1)1/4
=   cis(3p/ 4) =  exp (i3p/ 4)
Both
poles are in the upper half plane (see e,g, diagram for Jan. 27 post)
The
above are associated with two simple poles, for which:
Res
f(z) z = exp pi/4       =  
lim z ® exp pi/4      exp(iz) 
/ 4 z3     =
 exp(- p/4) / 4 exp(3pi/4) =  exp(- p/4) / 
2Ö2 – 2iÖ2  =
exp(-
p/4) /  2Ö2 (1– i) 
And:
Res
f(z) z = exp 3pi/4       =  
lim z ® exp 3pi/4      exp(iz) 
/ 4 z3     =
 exp(- 3p/4) / 4 [exp(3pi/4)] 3
=  exp(- 3p/4) / 4 exp(7pi/4)
=  exp(- 3p/4) / 4[ cos(9p/4) + i sin(9p/4)]
=  exp(- 3p/4) / 
2Ö2 + 2iÖ2  =   
exp(- 3p/4)
/  2Ö2 (1 +i)
Finally:
∫ -¥  ¥    exp(iz)
dz / (z4     +  1)  =
 2 pi [exp(- p/4) /  2Ö2 (1– i) 
+    exp(- 3p/4) /  2Ö2 (1 +i) ]
=
∫ -¥  ¥    cos x dx
/ (x4     +  1)
 
No comments:
Post a Comment