
 We have f(z) = z 2
Then:   I  =   ò C  f(z) dz 
=    
=  ∫ 1 1+i    z2 dz  +   ∫ 1+1 -1+i
  z2 dz   +   ∫ -1+1 -1  z2 dz  +
∫ -1 1 z2 dz
∫ -1 1 z2 dz
=   
[z
3  /3] 1 1+i       +  
[z 3  /3] 1+i
-1 +i   +   [z 3  /3] -1+i -1    +  [z 3 
/3] -1 1       
=   (-1 + 2i/3)  + [(2/3 + 2i/3) – (-2/3 + 2i/3)] + [-1 – 2i/3]
+ [(1/3 – (-1/3)]
=   -2 + 4/3 + 2/3  =  -2 +
6/3 = -2 + 2 = 0
2)    
Check
Cauchy relations first.
i)
¶ u/ ¶x = ¶ v/ ¶y  and ii) ¶ u/ ¶y  
=  - ¶ v/ ¶x
For
f(z) = 3x + 3iy  =  u(x,y) + iv(x,y) 
We
have:  ¶ u/ ¶x =  3   and
¶ v/ ¶y    = 3,   
so  ¶ u/ ¶x =   ¶ v/ ¶y  
And:
¶ u/ ¶y   = 0 =    
- ¶ v/ ¶x
So:   ¶ u/ ¶y  
=  - ¶ v/ ¶x
Since
the two Cauchy relations are satisfied then: 
I  =   ò C  f(z) dz 
=    0  
 
No comments:
Post a Comment