We left off multiplying: å ns by Eqn. (ii)a
-> å ns ms
Us (d U s / dx)
= å n s qs, (Vs B z - Ws
B y )
-> F å ms (d U s / dx)
= å n s qs, Vs
B z - å n s qs, Ws B y
Then:
F m z (dU / dx) = - 1/4 p B z (d B z / dx) - 1/4 p B y (d By / dx)
-> d / dx (F U ) = - 1/8 p d/dx (B
z 2 + By 2 )
F U + (B
z 2 + By 2 ) /8 p =
const. = P
Where the first term on the left is the ram
pressure and the 2nd term is the magnetic pressure.
-> F å ms (d U s / dx) = 1/4 p B 0 (d B y / dx)
1/ mt (å ms U s - 1/4 pF [B 0 B y ] = const. = c 1
Now multiply: å ns by Eqn. (ii)c
-> 1/ m tå ms W s - [B 0 B z ] /4 pF = c 2
mi / m t (U
i ) + me / m
t (U e ) = c 1 + [B 0 B y
] /4 pF
-> mi / m t (W i ) + me / m t (W e ) = c 2 + [B 0 B z ] /4 pF
Now: 4 p e F (B”y)= 1/4 p (1/ N e ) (d B y / dx)
U i - U e = - 1/4 p (1/ N e ) (d B z / dx)
And: W i - W e = 1/4 p (1/ N e ) (d B y / dx)
We will use the following Roman-numerated eqns. to get the result:
(I): U i = c 1 + [B 0 B y
] /4 pF - me /4 p e F ( U ) (d
B z / dx)
{ B z }
(II)
U e = c 1 + [B 0 B y
] /4 pF - m i /4 p e F (dB z /dt )
(III): W i = c 2 + [B 0 B z
] /4 pF + me
/4 p e F (dB y
/dt )
(IV): W e = c 2 + [B 0 B z
] /4 pF - m
i /4 p e F (dB y
/dt )
To obtain the equations with B only we must take the derivatives of the velocities, i.e.
(V): dU i /dt = B 0 /4 pF (dB y /dt) - me /4 p e F (B” z )
(VI): dU e /dt = B 0 /4
pF (dB y /dt) + m i /4 p e F (B”z )
(VII): dW i /dt = B 0 /4
pF (dB z /dt ) + me /4 p e F (B”y)
(VIII): dWe /dt = B 0 /4
pF (dB z /dt ) - m i /4 p e F (B”y)
NOTE: B”y = d/dt (dB y /dt ) = U (d/dx) U
(d B / dx)
From (VII) and (VIII):
B”y = 4 p e F / m t (dW
i / dt -
dW e /dt)
= 4 p e F / m t [e/ m i ( UB y - U i B 0) + e/ m e ( UB y - Ue B 0)]
(Using Eqn., (ii)c)
Then we have from the ram -magnetic pressure equation:
U = 1/ F (P
- (By 2 + Bz 2 ) /8 p
(To be continued)
No comments:
Post a Comment