Wednesday, October 22, 2025

Development Of A Mathematical Ballistics Model Using Differential Equations (Part 2)

 We left off in Part 1 with a conversion problem to solve before proceeding. That was to change the relevant transformation equations (6), e.g.

x =   r cos q

=  r sin q

r2  =  x2   +  y 2

To polar coordinate form.  Repeatingn the instructions:

The procedure entails differentiating the transformation set (6) twice with respect to t and then substituting the results into equations (5).

So we first need to obtain:

   d2x/ dt 2    d2/dt (cos q)  =  x''

   dy/ dt 2    =    d2/dt 2  (r sin q=  y''

Then we obtain:

x''   =   r'' cos q   -   2r' q' sin q   - q'' sin q  -  q'cos q   

y''   =   r'' sin q   -   2r' q' cos q   - q'' cos q  -  q'sin q   

Which results now must be substitutes into equations (5):

x = x'' =  A cos   =  c/ r2   cos q

y = y'' =  A sin   =  c/ r2   sin q

From which we obtain:

(9a) A x = x'' =  

 r'' cos q   -   2r' q' sin q   - q'' sin q  -  q'cos q   = cr-2   cos q

(9b) A y = y'' 

r'' sin q   -   2r' q' cos q   - q'' cos q  -  q'sin q =  cr-2   sin q

These equations can now be simplified by multiplying (9a) by cos q  and (9b) by sin then adding:  Doing so we get:

r''  -   q'2 =    cr-2 

Now, multiply the first equation (9a) by sin q  and the second equation (9b) by   cos and subtract the first from the 2nd to get:

r' q'    + 2 q''     =  0

Then the two equations:

(10)

r''  -   q'2 =    cr-2 

And:

r' q'    + 2 q''     =  0

Describe the motion of the particle m in polar coordinates.  The acceleration being along the line joining M and m and normal to this line, i.e.


The equation sets (7) or (10) then form the mathematical model for the preliminary ballistics problem.  But equations (10) as we'll see in Part 3 is more apropos to solving the full ballistics model.


No comments: