1) Using the Euclidean Algorithm show the continued fraction for: (237/ 139)
Solution:
(237/ 139) = 1 · 139 + 98/139 = 1 + 1/ (139/ 98)
=> (139/ 98) = 1 + 41 /98 = 1 + 1/ 98/41
98/41 = 2 + 16/41 = 2 + 1 /41/16
=> 41/16 = 2 + 9/16 = 2+ 1 / 16/9
16/9 = 1 + 7/9 = 1 + 1/9/7
9/7 = 1 + 2/7 = 1 + 1 /7/2
=> 7/2 = 3 + 1/2 = 3+ 1/ 2/1
2/1 = 2
Then: 237/139 = 1.7
See graphic below:
2) Show how the continued fraction for 840/ 611 results in C1 = 1.375 (Refer to top of Fig. 1)
Soln.
840/ 611 = 1 · 611 + 229/611 = 1 + 1/ 611/229
And: 611/229 = 2 + 153/229 = 2 + 1/ 229/153
=> 229/153 = 1 + 76/153 = 1 + 1/ 153/76
153/76 = 2 + 1/76
combining all of the preceding yields the result in Fig. 1 with C1= 840/611
No comments:
Post a Comment