Monday, April 3, 2023

Solutions To Basic Electrodynamics and E&M Problems

 1)     For the electric field vector E:


  2 E /  x2  =   moε ¶ 2 E /  t2

If we compare the above to the generic wave equation for propagation of transverse waves, say on a string, we find:

 2y/  x2  =   1/ v2   2y/  t2  

Where v is the wave velocity. For the Maxwell wave equations, however, we have v = c. And hence we can equate:

1/ c2    =  moεo    

2   = 1/  moεo    and: c =  1/ Ömoεo  )

c =  1/ Ö( 4 π x 10-7  H/m) (8.85 x 10-12  F/m )

So that c = 2.99792  x 10   m/s

2)a)  For a particular electromagnetic wave traveling in free space the power is given as P = 1300 Wm-2 .  Find the magnitudes of the wave vector components,  y  and z   if:
P = E y  z / c

Hint: The impedance of free space is given by:

Ömo  Ö εo    E y  / 

b)Find the magnitude of the magnetic flux density:  B z

Solution:

a)    P = E y  z / c  so:    Pc =   E y  z

= (1300 Wm-2 )  (  3.0  x 108    m/s) =   3.9  x 1011   Wms-1

But:  Ömo  Ö εo    E y  / z    

 
So:  E y  =     Ömo  Ö εo     z    

Ömo  Ö εo    =  Ö( 4 π x 10-7  H/mÖ (8.85 x 10-12  F/m )

=   377  W  (Impedance of free space)
 

So:  E y  =     377  W (z     )
 

Subs. This into Pc =   E y  z
 

To get:  P c =   377  W   (z) 2

Then:

z  =     Ö P c /   Ö377  W   Ö (3.9  x 1011   Wms-1/377  W )

z  =       3.2  x 10  Am-1

And:   E y  =     377  W (z    ) = 

377  W (3.2  x 10  Am-1 )  =  1.2  x 10   Vm-1


b)      B z  mz  =   (4 π x 10-7  H/m) (3.2  x 10  Am-1 )

 =   0.04 T  (Tesla)


3)The general wave equation for E is:

 
 2E /  x2  =   moε E /  t2

Writing out all component wave eqns.:

 2x  /  x2  =   moε ¶ 2 x /  t2

 2y  /  x2  =   moε 2 y /  t2

 2z  /  x2  =   moε 2 z /  t2


                          E-M wave propagation showing E, B vectors.

No comments: