1) Given S 1 = { 1 1 , 1 2 , 1 3 }
a) Find: 
dim C o ,   dim C 1 
,   dim  Z1 ,
dim B 1  
Thence or otherwise,
find:  H1 = Z1 /
B 1 
Solutions:
dim C o =
the number of nodes = n  =  3
dim C 1 
= the number of branches = b =  3
dim Z 1 = the number of cycles = [b + 1 – n]
=   3 +1 – 3 = 1
dim B 1 = 1 (The number of boundaries for the given cycle, i.e. every boundary is a cycle.). Then the quotient space is:
H1 = Z1 / B 1 = dim Z 1 - dim B 1 = 1 - 1 = 0
b)Write expressions for
each branch (or chain, or 1 - simplex) for the figure.
¶ (B – A) = 11
¶ (C – B) = 12
¶ (A – C) = 13
c) This (triangle space
)group we can denote by B 1 (D ).
 Which
also implies the group of n-cycles or  Z n (D )  
Write an expression for
the 1-cycle   Z 1  and
thence show we may write:
¶ 1 (Z 1)  =    a
 +   b    +   g
We may write for the one cycle:
Z 1 = AB + BC + CA Or:
¶ 1 (Z 1) = (B – A) + (C – B) + (A – C)
Or: ¶ 1 (Z 1) = a + b + g
Letting: a = (B – A) ; b = (C – B); g = (A – C)
Thereby confirming Z 1 is a
1-cycle.
d) Let each node be
expressed:  A =   0 1         B
=   0 2         C
=   0 3       
  
 Then rewrite each
as vectors of the chain space  C o 
Let
us take the set of nodes  S o    first for which elements applied to the
previous triangle ABC we have::
A = 0 1 B = 0 2 C = 0 3
Then
each of these can alternatively be denoted by vectors of the chain space  C o  
A =   0 1       =   [1, 0, 
0] T
B =   0 2       =   [0, 1, 
0] T
C = 0 3 = [0, 0, 1] T
e)  Repeat for the
1-simplexes (chains)  as vectors related to the chain space C 1 :
By the same token each of the simplexes can be
specified by vectors related to the chain space C 1 :
 
No comments:
Post a Comment