1) Compute the Bessel functions for Jo(x) and J1(x) with x = 1 and then compare with the values obtained from the graph shown at top.
Solution:
Use the truncated series:
Jo(x) = 1 - x2/ 22 (1!)2 + x4/ 24 (2!)2 - x6/ 26 (3!)2 +…..
Then for x = 1:
Jo(1) = 1 – (1)2/ 22 (1!)2 + (1)4/ 24 (2!)2 – (1)6/ 26 (3!)2 +…
Jo(1) = 1 – ¼ + 1/ 64 - 1/2304 = 0.765
Compare to graphical value: Jo(1) = 0.8
Next:
J1(x) = x/ 2 - x3/ 23 ·1! 2! + x5/ 25 ·2!3! - x7/ 27 ·3!4! - .....
Then for x = 1:
J1(1) = 1/ 2 – (1)3/ 23 ·1! 2! + (1)5/ 25 ·2!3! – (1)7/ 27 ·3!4! - .....
J1(1) = ½ - 1/16 + 1/ 384 - 1/ 18432 = 0.44
Compare to graphical value: J1(1) = 0.45
2) Find the twist in a solar loop (take it to be a magnetic tube) if: B q (r)= 0. 1T and B z (r) = 0.2T. Take the radius of the tube to be r = 104 km and the length L =108 m. Is the tube kink unstable or not? (Kink instability is said to obtain when: T(r) >2 p
Solution: the “twist” is defined:
T(r) = (L B q(r))/ (r B z (r))
Where: B q(r) = 0.1 Tesla and B z (r) = 0.2 Tesla
Also: r = 104 km = 107 m and L = 108 m
Therefore: B q(r))/ (B z (r)) = (0.1)/ (0.2) = 0.5 and L/r = (108)/ (107) = 10
So:
T(r) = (L/r) (0.5) = 10 (0.5) = 2.0
The tube is not kink unstable since that requires: T(r) > 2p = 6.28
3) Compute the intensity for the azimuthal magnetic field component (i.e. B q (r) ) of a large sunspot, if its equilibrium magnetic field Bo = 0.01 T and the value of J1(ar) conforms to a = 0.4 and r = 40.
Solution: By definition: B q (r) = Bo J1(ar)
If a = 0.4 and r = 40 then ar = (0.4)(40) = 16
From the graph: J1(ar) = J1(16)) » 0.17
Therefore:
B q (r) = Bo J1(ar) = 0.01T (0.17) = 0.0017 Tesla
No comments:
Post a Comment