A series of separate differential equations can be set up using the diagram shown below, based on projectile motion - incorporating gravity but neglecting air drag effects.
v x = dx/dt =
vy = dy/dt =
The force components at time t are:
F x = 0 and:
With these incorporated the differential equations become:
i) m d2x/dt 2 = 0 and ii) m d2y/ dt 2 = - mg
Each equation above requires two integrations, yielding 4 constant of integration in all.
For eqn. (i) we get on integrating: dx/ dt = c1 Then:
ò dx = c1 òdt
Yields: x = c1t + c2
Here for eqn. (ii) we have:
d2y/ dt 2 = - g So: dy/dt = - gt + c3
And: y = - ½ g t 2 + c3t + c4
Based on the initial conditions given we have:
c1 = vo cos(q), c2 = 0, c3 =
Then the position of the projectile at time t seconds after firing can be found from:
x = vo cos(q) t and: y = - ½ g t 2 + vo sin(q) t
Clearly, the projectile attains maximum altitude when its y -component of velocity is 0, i.e.
dy/ dt = 0 = -gt + vo sin(q)
This must occur at time:
t' = vo sin(q)/ g
Then the maximum altitude is:
y max = - ½ g t' 2 + vo sin(q) t' =
- ½ g [vo sin(q)/ g] 2 + vo sin(q) [vo sin(q)/ g]
= vo sin(q) 2 / 2 g
Example Problem:
Find:
i) The maximum height attained when the launch angle for a projectile is q = 30 degrees.
ii) Write an equation for the slope (dy/dx) of the path of the projectile at any point.
iii) Write the condition to obtain the range R (maximum horizontal distance) of the projectile and find it.
iv) From (iv) what can be inferred about the angle F ?
Solutions:
i) The maximum altitude is:
y max = - ½ g t' 2 + vo sin(q) t' =
- ½ g [vo sin(q)/ g] 2 + vo sin(q) [vo sin(q)/ g]
= vo sin(q) 2 / 2 g
q = 30 degrees:
= vo sin(30) 2 / 2 g
But sin (30) = 1/2 so:
y max = vo (1/2) 2 / 2 g
= vo (1/4) / 2 g = vo / 8 g
ii) Slope at any point:
dy/dx = (dy/dt)/ (dx/dt) =
- ½ g t 2 + vo sin(q)/vo cos(q)
iii) Range (R) occurs when y = 0
This occurs at double the time for max. altitude since trajectory is symmetric.
So: 2t' = 2 ( vo sin(q) / g )
Then x = R = vo cos(q) 2 ( vo sin(q) / g )
= ( vo 2 / g) sin(2q)
iv) The slope dy/dx is (expanded from (ii)):
dy/dx = -2 vo sin(q) + vo sin(q)/ vo cos(q)
= - [sin(q)/ cos(q)] = - tan (q)
This shows the angle F = p - q
i.e. projectile returns to Earth at same angle it left.
Suggested Problem:
No comments:
Post a Comment