Monday, July 10, 2023

Solutions To Numerical Analysis Problems (3)

 1)  Find the x coordinate of the point where the curve  x 3  - x  crosses the horizontal line y = 1.

Solution:

The given curve crosses the line when:

 x 3  - x  =   1

Or:   x 3  - x  - 1   =  0

We then ask: When does  x 3  - x  - 1   =  0

The graph (below) shows a single root located between x = 1 and x = 2:


Try: x = 1.3 =  x n 

For Newton's Method:

x n+1  =   xn  -  f(xn) / f '(xn

= 1.3 - {(1.3) 3    - (1.3) - 1)}/ 3 (1.3))2  -  1 =  1.325

Which turns out to be very close to the actual root value.

2) Using Newton's method find at least one root approximation for the equation:

x 3   =   2    Rewrite as: f(x) =   x 3  -   2  = 0  

We use a graph for f(x)  =   x 3  -   2, e.g.:

And note a likely root occurs at about: 1.2, so try: x = 1.2 =  x n 

For Newton's Method:

x n+1  =   xn  -  f(xn) / f '(xn

Based on:

f(x) = x 3  -   2  and f'(x) = 3x 2

x n+1  =  1.2 - (x 3  -   ) / 3x 2

(1.2) - {(1.2) 3  -  2)}/ 3 (1.2))2  = 1.263

Since:  f '(xn)  =  3x 2

We see the approximated value is close enough. Check:

x 3  -   2  = 0    vs.

(1.263) 3   - 2  = 0.015

No comments: