Find the general solution:
(x - y - 3) dx + (3x - 3y + 1) dy = 0
Recall: dy/dx = M(x,y)/ N(x,y)
Or: M(x,y) dx = N(x,y) dy
M(x,y) = x - y - 3 = a + bx + cy
N(x,y) = (3x - 3y + 1) = = a + bx + gy
Then: ( a + bx + cy) dx = (a + bx + gy) dy
a = -3, b = 1, c = -1
a = 1, b= 3, g = -3
We demand (for Case I): bg - c b = 0
Check: (1)(-3) - (-1)(3) = -3 - (-3) = -3 + 3 = 0
Let bx + cy = v then:
b dx + c dy = dv
Or:
dy/dx = - b/c + 1/ c (dv/dx)
Substituting values:
dy/dx = - (1)/(-1) + (-1) (dv/dx) = 1 - dv/dx
1 - dv/dx = (a + v)/ (a + bx + g y)
And since: bg - c b = 0 we have:
g / c = b/b = k or: g = kc and b = kb
So that:
b x + g y = kbx + kcy = k (bx + cy) = kv
And our starting DE becomes:
- b/c + 1/ c (dv/dx) = a + v/ a + kv
Or: 1 - dv/dx = -3 + v/ 1 + (b/b )v
Or:
dv/dx - 1 = (3 + v)/ 1 + 3v
Simplifying:
dx = [(2 + 3v)/ (3 + v)] dv
Replace (v = x + y) and integrate;
Solution shown from Mathcad 14:
And including integration const.
3x + 3y - 7 ln(x + y + 3) = c
No comments:
Post a Comment