1 1)Given the
function: u(x,y) = x3 – 3xy2
¶
u/ ¶
x =
3 x2 – 3y2
¶
u/ ¶
y =
- 6xy
And
also: ¶ 2 u/ ¶ x2 = 6x
And: ¶ 2
u/ ¶
y2 = - 6x
Since: ¶
2 u/ ¶
x2 + ¶ 2 u/ ¶ y2 = 6x
+ (-6x) = 0
It’s clear u(x,y) and its derivatives are everywhere
continuous on the whole complex plane.
2) Given the function: u(x.y) = exp(-x) [x sin y – y cos y]
¶
u/ ¶
x =
exp(-x) (sin y) + (-exp(-x)) [x sin
y – y cos y]
= exp(-x) (sin y) - x
exp(-x) sin y + y (exp(-x) ) cos y
¶ 2 u/ ¶ x2 = ¶ / ¶ x [exp(-x) (sin y) - x exp(-x) sin y +
y (exp(-x) ) cos y]
y (exp(-x) ) cos y]
= -2 exp(-x) sin y +
x exp(-x) sin y - y (exp(-x) ) cos y
AAlso: ¶u/ ¶ y = exp (-x) (x cos y + y sin y – cos y) =
x exp (-x) cos y + y (exp(-x) sin y - exp(-x)
cos y
¶
2 u/ ¶
y2 = ¶ / ¶ y [x exp (-x) cos y + y (exp(-x)
sin y - exp(-x) cos y]
= - x exp(-x) sin
y + 2 exp(-x) sin y + y (exp(-x) ) cos y
So that: ¶ 2 u/ ¶ x2 + ¶ 2
u/ ¶
y2 = 0
And the function u(x,y) is harmonic
(To be continued.)
No comments:
Post a Comment