1) Substitute the values for vx , v y and vz earlier obtained into equations (1), (2) and (3) giving Maxwell's curl H equation in terms of rectangular components to get the 3 resulting plasma frequency equations. Then show if the frequency is much greater than the gyrofrequency, i.e.
w >> w g
All the equations become identical in form
Solution: The equations are:
1) (Ñ x H) x = Ne vx + j w εo Ex
2) (Ñ x H) y = Ne v y + j w εo Ey
3) (Ñ x H) z = N e vz + j w εo Ez
And we know:
vx = { j (m w /q) E x + E y B z}/ B z 2 - m 2 w 2 /q 2
vy = { j (m w /q) E y + E x B z}/ B z 2 - m 2 w 2 /q 2
vz = - j q Ez /m w
Substitute the v's into the correct equations (1), (2) and (3), and let q = e ( 1.6 x 10-19 C ) to get:
1b) (Ñ x H) x =
Ne {j (m w /q) E x + E y B z}/ B z 2 - m 2 w 2 /e 2 } + j w εo Ex
2b) (Ñ x H) y =
Ne { j (m w /q) E y + E x B z}/ B z 2 - m 2 w 2 /e 2 } + j w εo Ey
3b) (Ñ x H) z = Ne (- j e Ez / m w) + j w εo Ez
After some algebra, we obtain:
(Ñ x H) x =
j w εo E x [1 + Ne 2 /εom ( w g 2 - w 2)]
+ NE y q 2 w g /εom ( w g 2 - w 2)
(Ñ x H) y =
j w εo E y [1 + Ne 2 /εom ( w g 2 - w 2)]
- NE y q 2 w g / m( w g 2 - w 2)
(Ñ x H) z =
j w εo E z [1 - Ne 2 /εom w 2]
Now, assume:
w >> w g
Then we see:
(Ñ x H) x =
j w εo E x [1 + Ne 2 /εom ( w 2)]
(Ñ x H) y =
j w εo E y [1 + Ne 2 /εom ( w 2)]
(Ñ x H) z =
j w εo E z [1 - N e 2 /εom w 2]
I.e. All the relations become identical in form.
2) The Earth's ionosphere has a plasma number density of
10 12 electrons per cubic meter. Find the (critical) radio frequency of this source.
Solution:
The critical frequency is given by:
f o = 9 Ö N
Where N = 10 12
Then: f o = 9 Ö 10 12
= 9 x 10 6 cycles per second
Or: 9 MHz
No comments:
Post a Comment