1) Complete the square for the general analytic equation:
Ax 2    +  Ay2   + Dx  + Ey  + F   = 0
To show how the radius r is derived, as well as the coordinates for the center of a circle not necessarily at (0,0)
Solution:
Write:  (x 2   + Dx / A) +  (y 2   + Ey/ A) =    - F/A
[x 2   + Dx / A  +   (D/ 2A) 2  ] +   [y 2   + Ey / A  +   (E/ 2A)2 ]
= - F/A + (D 2   +    E  2  /  4 A 2    
SO:
(x  +   D/ 2A)2   +  (y  +   E/ 2A)2       =   D 2  +   E 2      - 4AF) /  4 A 2 
Then:   r 2     = (D 2   +    E 2      - 4AF) /  4 A 2     
Looking at the two factors we see the center coordinates must be:
h =  (-D/ 2A)   and k =  (-E/ 2A)
2) Check the equation:  x 2    +    y 2  =  4
to see that the general form also applies here.
Solution:
Compare to general form:
Ax 2    +  Ay2   + Dx  + Ey  + F   = 0   (A not equal 0)
Then: A = 1 , D = 0, E = 0, F  =   -4
The center is at:
h = (-D/ 2A)   = 0   and k =  (- E/ 2A) = 0  So:   C(0, 0)
Since   4  =  r2  then r  is 2, then we see radius is 2. 
3) Find the coordinates of the center of each of the following circles and the radius r, also sketch the circle:
a)  x 2    +    y 2  - 2 y   =  3
We have: A = 1, D = 0,  E = -2  and F = -3
Then the center is at:  
(h, k) =    (-D/ 2A),   (-E/ 2A)  =   (0,  1)
r 2     = (D 2   +    E 2      - 4AF) /  4 A 2     
So:  
r 2     = (0 2   +    (-2)  2      - 4(-3_) /  4 (1) 2     
r 2     =   16/ 4   = 4  so radius  r  = 2
b) 2x 2    +  2  y2   + x  + y = 0
Here: A = 2,   D = 1,  E = 1,  F = 0
Center is at:
(h, k) =   (-D/ 2A),   (-E/ 2A)  =   (- 1/4,  -1/4)
Radius:
r 2      = (D 2   +    E 2      - 4AF) /  4 A 2     
So:  
r 2     = (1 2   +    (1)  2      - 4(0) /  4 (1) 2     
=   2/ 4 =  1/2  
So:  r =  1/ Ö 2   
c) x 2    +    y 2  + 2x  = 8
We have: A = 1,  D= 2, E = 0, F = -8
Center is at:
(h, k) =   (-D/ 2A),   (-E/ 2A)  =   (- 2/ 2,  0 ) = (-1, 0)
Radius:
r 2      = (2 2     - 4(-8)) /  4 A 2     
So:  
r 2     =    36/ 4   =  9
So; r =  Ö 9   =    3
The circle is the same as shown below for (4)
4) Obtain the equation for the circle shown below:

By inspection, center is at (h, k) =   (-1, 0)
Also, radius r = 3 units 
We now write the most general form using coordinates (h, k) for the center:
(x - h) 2    + (y - k ) 2   =  r 2 
Then:
(x - (-1))2    + (y - 0 ) 2   =  3 2 
The equation for the circle is then:
(x + 1)2    + y 2   =   9
Or:
x 2    +  2x  + 1  +    y 2   = 9  
Finally:
x  2    +    y 2  +  2x   =  8
 
No comments:
Post a Comment