1) Evaluate:
∫o 2p dq /
(37 -
12 cos q) for ÷ z ÷ <
6
Again:
cos q =
[exp(iq)
+ exp (-iq)]/ 2
But
z = exp (iq) so that:
cos q = z +
z -1/ z
And
dz = iexp(i q ) dq =
iz dq so that: dq =
dz/ iz
Then:
∫o 2p dq /
(37 -
12 cos q) =
ò C dz/ iz /[ 37 - 12 (z + z -1/ z) ]
ò C dz/ iz /[ 37 - 12 (z + z -1/ z) ]
= ò C dz/ iz / [ 37 - 6 (z + z -1) ]
= ò C dz / 37 - 6 (z + z -1/ z) iz =
1/i ò C dz / 37z - 6 z2 – 6
1/i ò C dz / 37z - 6 z2 – 6
Solve the quadratic (in denominator) to obtain the
poles:
-
6
z2 + 37z - 6 = 0
Factors
to yield: (-6z + 1)(z – 6) = 0
Therefore:
z = 1/6 and z = 6
Both
poles are simple and also acceptable for the condition. Since both poles are
simple we can use:
Res
[f(z)] z ® z o
= [p(z)/
q’(z)] z ® z o
For which p(z) = 1 and q’(z) = -12z + 37
Res
[f(z)] z ® 1/6
=
[1 / -12 (1/6) + 37]
= 1/ (-2
+ 37) = 1/35
And:
ò C f(z)
dz = 1/i [2 pi c - 1 ]
= 2 p/ 35
\ ∫o 2p dq /
(37 -
12 cos q) = 2 p/ 35
For z = 6:
Res
[f(z)] z = 6 = [1 /
-12 (6) + 37] =
1/ (-72 + 37) = - 1/35
So that:
ò C f(z)
dz =
-1/i [2 pi c - 1 ]
= - 2 p/ 35
2) Evaluate:
∫o 2p dq /
(13 - 5 sin q) for
÷ z ÷ < i
Here: sin q =
[exp(iq)
- exp (-iq)]/ 2i
But
z = exp (iq) so that:
sin q = 1/
2i (z + z -1)
And
dz = iexp(i q ) dq =
iz dq so that: dq =
dz/ iz
Rewrite
the integral in terms of complex variable z:
∫o 2p dq /
(13 - 5 sin q) =
ò C dz/ iz / [ 13 - 5/ 2i (z + z -1) ]
ò C dz/ iz / [ 13 - 5/ 2i (z + z -1) ]
= ò C dz /
[13 - 5/ 2i (z + 1/ z) iz]
= ò C 2
dz / (-
5 z2 + 26i z
+ 5)
Solve
for the complex quadratic in denominator to get:
(5z
– i) (-z + 5i) = 0
There
is only one relevant pole here, which
is z = i/5. The other doesn’t meet
the condition ÷ z
÷ < i
Res
[f(z)] z ® z o
=
[p(z)/ q’(z)] z = i /5
= [2/
(-10z + 26i)]
Then:
ò C f(z) dz
= [2 pi c - 1 ]
= 2 pi ( 1/12i)
= 2 p/ 12 = p/ 6
= 2 p/ 12 = p/ 6
Therefore:
∫o 2p dq /
(13 - 5 sin q) = p/ 6
No comments:
Post a Comment