53) We have:
I = K x
(1….0…..0)
(0….1…..1)
(0….1…
..1)
We
write out the determinant with eigenvalue l:
(1
- l….0…..0)
(0….1
- l ..1)
(0….1…
..1 - l)
Leading
to the characteristic equation:
(1
- l)3 – (1 - l) = 0
(1
- l) [ ((1 - l)2 – 1] = 0
Or:
(1
- l) (l2 – 2l) = 0
Yielding
eigenvalues: l=
0, l = 2
Then:
T
= Kl, so T1 = 0, T2 = K, and T3 =2K
So
(B) is the answer.
54)We will
have to take: (I – T1)C
So
that:
K
[(1….0…..0)
[(0….1…..1)
[(0….1… ..1)
-
K
(1….0…..0)](x)
(0….1….. 0)] (y)
(0….0… ..1)] (z)
=
(0….0…..0) (x)
(0….0…..1) (y)
(0….1… ..0) (z) = 0
So
that: 0
=
(0)
(z)
(y)
Therefore
the ans. is (A) or i
55)
By the analog of the parallel axis theorem:
I
o = IG - M(R2 I – RR)
D I = I o - IG =
M(R2 I – RR)
RR
= r o 2 x
(0….0………0)
(0….1/2…..1/2)
(0….1/2…
..1/2)
D I = M r o
2 x
[(1….0…..0)
[(0….1…..0)
[(0….0… ..1)
-
(0….0……..0)]
(0….1/2.. 1/2)]
(0….1/2… ..1/2)]
=
M r o 2 x
(1….0………..0)
(0….1/2…..-1/2)
(0….-1/2…
..1/2)
56)
For a circular loop: B = mo I / 2r at the center of the loop, where mo is the magnetic
permeability of free space.
We
have: r = 0.05 m, B = (0.70) (10 -4) Wb/m2
(Remember
the conversion factor: 1G = 10 -4
Wb/m2 )
Then,
solving for I: I = 2 Br/ mo
where mo = 4p x
10 -7 H/m
I= 2 (0.070)
10 -4 A/ (4p x
10 -7 H/m) =
5.6 A
57)
The work done in bringing the charge is equal
to the change in the electrostatic energy of the system. Let W1 and W2
be the electrostatic energy of the system without and with the presence of the
dielectric, respectively.
Then:
W1 = 1/8 p ∫ 0
¥ D ×E ( 4p r2 ) dr =
1/8 p ∫ 0
b (q/ r2)2 ( 4p r2 ) dr +
1/8
p ∫ a
b (q/ r2)2 ( 4p r2 ) dr +
1/8
p ∫ a
¥ (q/ r2)2 ( 4p r2 ) dr
And:
W2
= 1/8 p ∫ 0 b
(q/ r2)2
( 4p r2 ) dr +
1/8
p ∫ b a (kq/ r2)2 (q/ r2) ( 4p r2 ) dr +
1/8
p ∫ a
¥ (q/ r2)2 ( 4p r2 ) dr
Work
done = W2 – W1 =
1/8
p ∫ b a (kq/ r2) (q/ r2) ( 4p r2 ) dr
- 1/8 p ∫ b a
(q/ r2)2
( 4p r2 ) dr
=
(k – 1) q 2 [1/b - 1/a]
58) We have an ideal
monatomic gas so:
U
(internal energy) = 3/2 [n RT/2]
The
change in internal energy is:
DU = 3 nR [ 373 K
- 273K] / 2
=
3 (8.32 J/K) (100K) /2= 1250 J
59) The change in entropy of the gas, given
dS = dQ/ T , is:
dS = dQ/ T , is:
D S = ∫ 273 373 nR dT/ T
=
5/2 nR ln (373 – 273) = 6.56 J/K
60) The f electron has ℓ =3 so that the total angular momentum quantum number possibilities are:
j = ℓ + ½,
ℓ - ½
Then: j = 7/2,
5/2
No comments:
Post a Comment