1)
∫ -¥ ¥ sin x dx
/ (x2 + 2x + 4)
In
terms of f(z) we can write:
f(z)= exp(iz)
dz / (z2 - 2z + 4)
so
the integral becomes:
∫ -¥ ¥ exp(iz)
dz / (z2 - 2z + 4)
Factor
f(z) to get:
exp(iz) dz / (z2 - 2z + 4) =
exp(iz)/ (z + 1 - iÖ3) (z + 1 + iÖ3)
Then
singularities (poles ) occur at:
z=
-1 + -iÖ3 and z = -1 -iÖ3
Therefore:
Res
f(z) = lim z ® 1+iÖ3
[exp(iz)/ (z + 1 + iÖ3)]
= exp i(- 1+ -iÖ3)/ 2iÖ3
= exp(-i) exp(-Ö3) / 2i Ö3 exp (-Ö3)
But
recall exp (-i) = sin(-1) = -sin
(1) so that:
Res
f(z) = - sin(1)/ 2i Ö3 exp (-Ö3)
Then:
∫ -¥ ¥ exp(iz) dz / (z2 - 2z + 4) =
2
pi [- sin(1)/ 2i Ö3 exp (-Ö3)]
= -pi [- sin(1)/ Ö3
e-Ö3 ]
= ∫ -¥ ¥ sin x dx
/ (x2 + 2x + 4)
Note:
this soln. is for the upper half plane.
To modify the development for the case where the singularity is in the lower
half plane, or m < 0 (i.e. m = -i) then we have:
∫ -¥ ¥ exp(im
x) f(x) dx = - 2 pi å (Res)
(See e.g. the accompanying graphic. Note that in the lower graphic, that should be - i Ö3 along the Im -axis)
2) ∫ -¥ ¥ cos x dx
/ (x4 + 1)
To
obtain singularities:
x4 + 1
= 0 or
x4 =
-1
Then:
x = (-1)1/4 = (-1 + 0i)
1/4
= 4Ö1 [cos (p + 2kp/ 4) + isin((p + 2kp/ 4)]
For
k= 0:
(-1)1/4
= cis(p/ 4) = exp (ip/ 4)
For
k=1:
(-1)1/4
= cis(3p/ 4) = exp (i3p/ 4)
Both
poles are in the upper half plane (see e,g, diagram for Jan. 27 post)
The
above are associated with two simple poles, for which:
Res
f(z) z = exp pi/4 =
lim z ® exp pi/4 exp(iz)
/ 4 z3 =
exp(- p/4) / 4 exp(3pi/4) = exp(- p/4) /
2Ö2 – 2iÖ2 =
exp(-
p/4) / 2Ö2 (1– i)
And:
Res
f(z) z = exp 3pi/4 =
lim z ® exp 3pi/4 exp(iz)
/ 4 z3 =
exp(- 3p/4) / 4 [exp(3pi/4)] 3
= exp(- 3p/4) / 4 exp(7pi/4)
= exp(- 3p/4) / 4[ cos(9p/4) + i sin(9p/4)]
= exp(- 3p/4) /
2Ö2 + 2iÖ2 =
exp(- 3p/4)
/ 2Ö2 (1 +i)
Finally:
∫ -¥ ¥ exp(iz)
dz / (z4 + 1) =
2 pi [exp(- p/4) / 2Ö2 (1– i)
+ exp(- 3p/4) / 2Ö2 (1 +i) ]
=
∫ -¥ ¥ cos x dx
/ (x4 + 1)
No comments:
Post a Comment