We have f(z) = z 2
Then: I = ò C f(z) dz
=
= ∫ 1 1+i z2 dz + ∫ 1+1 -1+i
z2 dz + ∫ -1+1 -1 z2 dz +
∫ -1 1 z2 dz
∫ -1 1 z2 dz
=
[z
3 /3] 1 1+i +
[z 3 /3] 1+i
-1 +i + [z 3 /3] -1+i -1 + [z 3
/3] -1 1
= (-1 + 2i/3) + [(2/3 + 2i/3) – (-2/3 + 2i/3)] + [-1 – 2i/3]
+ [(1/3 – (-1/3)]
= -2 + 4/3 + 2/3 = -2 +
6/3 = -2 + 2 = 0
2)
Check
Cauchy relations first.
i)
¶ u/ ¶x = ¶ v/ ¶y and ii) ¶ u/ ¶y
= - ¶ v/ ¶x
For
f(z) = 3x + 3iy = u(x,y) + iv(x,y)
We
have: ¶ u/ ¶x = 3 and
¶ v/ ¶y = 3,
so ¶ u/ ¶x = ¶ v/ ¶y
And:
¶ u/ ¶y = 0 =
- ¶ v/ ¶x
So: ¶ u/ ¶y
= - ¶ v/ ¶x
Since
the two Cauchy relations are satisfied then:
I = ò C f(z) dz
= 0
No comments:
Post a Comment