We
now look at more difficult complex integrals:
∫o 2p dq /
(1 + ½ cos q)
Here we make us of: cos q =
[exp(iq)
+ exp (-iq)]/ 2
But
z = exp (iq) so that:
cos q = z +
z -1/ z
And
dz = iexp(i q ) dq =
iz dq so that: dq =
dz/ iz
We can
then rewrite the integral in terms of z:
∫o 2p dq /
(1 + ½ cos q) = ò C dz/ iz / 1 + ½ (z + z -1/ z) =
1/2i
ò C 2
dz/ (2z + ½ z2 + ½)
First,
obtain the poles from the quadratic in the denominator:
½ z2
+ 2z + ½ = 0
Solve for z
using the quadratic formula:
z = [-b + {b2 - 4ac}1/2]/ 2a
z = [-b + {b2 - 4ac}1/2]/ 2a
To
obtain:
z=
-2 + Ö3 or z1= -2 + Ö3 and
z2= -2 - Ö3
We
can eliminate the 2nd root (pole) since we require: ÷ z
÷ < 1
Then: we use -2 + Ö3
Because
this is a simple pole we can use:
Res
[z] z ® z o = p(z)/ q’(z)
Where
q’(z) = z + 2 and p(z) = 4
Then: Res [z] z ® z o = 4/
(z + 2)
Insert
z = -2 + Ö3 :
Res
[z] z ® -2 + Ö3
= 4/
[(-2 + Ö3) + 2] =
4/Ö3
Then:
ò C f(z)
dz =
(1/ 2i) [2 pi c - 1 ] = 4p / Ö3
Problems
for Math Mavens:
1)
Evaluate:
∫o 2p dq /
(37 -
12 cos q) for ÷ z ÷ <
6
2)Evaluate:
∫o 2p dq /
(13 - 5 sin q) for
÷ z ÷ < i
No comments:
Post a Comment