Sunday, December 29, 2013

Solution to First Laurent Series Additional Problem


Let f(z) = exp (-1/z 2) /  z5


a) Show the Laurent series can be written: 


å¥ n = 0    (-1) n   /   n !  z 2n + 5   

 

We can write:

 
exp (-1/ z 2)  = 1 -   z -2   - z - 4/  2!  - z - 6/  3!  +  ……..

 

So that:

 
exp (-z 2) /  z5     =  1/  z5  (1 -   z -2   - z - 4/  2!  - z - 6/  3!  +  ……..  )

 

=    z – 5 -  z – 7 -  - z - 9/  2!   - z - 11/  3!   +  …….


Or:

 
exp (-z 2) /  z5   =    z – 5  (å¥ n = 0    (-z -2   ) n   /   n !  )
 
 
=   å¥ n = 0    (-1) n   /   n !  z 2n + 5   

 
The challenge problem for math mavens remains and I will provide the solution for that on Tuesday! See if you can work it out!

No comments: