Let
f(z) = exp (-1/z 2) / z5
a)
Show the Laurent series can be written:
å¥ n = 0 (-1)
n / n ! z 2n
+ 5
We
can write:
exp
(-1/ z 2) = 1 - z -2
- z - 4/ 2! - z
- 6/ 3!
+ ……..
So
that:
exp
(-z 2) / z5 = 1/
z5 (1 - z -2
- z - 4/ 2! - z
- 6/ 3!
+ …….. )
= z – 5 - z – 7 - -
z - 9/ 2! - z
- 11/ 3!
+ …….
Or:
exp
(-z 2) / z5 = z –
5 (å¥ n = 0 (-z -2 ) n / n ! )
= å¥ n = 0 (-1)
n / n ! z 2n
+ 5
No comments:
Post a Comment