Thursday, July 17, 2025

Solving More Difficult Partial Differential Equations (Pt. 4): General Solution of the 1D Vlasov Equation

 In Plasma Physics' comprehensive PH D exams, one 's first problem generally starts with asking for the solution of the 1D  Vlasov-Boltzmann equation:

 f/  t + v  · Ñ x f +  v'  Ñ v f = 0

A time-independent solution is generally required and I show here how to proceed. Assuming constants of the motion, then df/dt =0, so we have these conditions for the zero order Vlasov equation:

i) f =   f o  f 1

ii) E =   E o  + E 1

iii) B=   Bo  + B1

 ( f/  t)c     =  0

Then we can write:

Ñ x   f o + q/ m (E o + v x Bo ) · Ñ v  f o  =  0

The total derivative  of   f following the zero order or unperturbed orbit is:

(d f o / dt) o  = 0

For the first order equation we have:

 f  t   Ñ x  f o + q/ m ( E o + v x Bo ) · Ñ v  f  

= - q/ m ( E 1 + v x B1 ) · Ñ v f o

Þ   

( d f  / dt ) o   =   - q/ m ( E 1 + v x B1 · Ñ v f o


We now need to specify the zero order orbit in phase space, viz.

X' (t) = V (t)

V (t) =    q/ m [0 (X, t) V (t)  x 0..(X, t) ]

Then:   X(t') =  x(t) +  ò t1  t  X(t'') dt''

 V(t') =  v(t) +  ò t' t  v(t'') dt''


We need to follow the prescription to solve for  f  by integrating both sides of the earlier boxed equation, e.g.

 ò t-¥    df / dt ) o   =  ò t-¥   RHS dt'   (zero order orbit)

This leads to the general solution of the linear Vlasov equation:

 f 1  (x, v, t) =  f [X(t'), V(t'), t' =  (-∞)] =

- q/m ò t-¥ dt{E 1 [X(t'), t'] +  V(t') x  B 1[X(t'), t'] · Ñ v f 0

Suggested Problem:

Show that:

Ñ x · v = 0   and:  Ñ v · (E  + vB )  = 0

And write the resulting partial differential equation.


No comments: