Tuesday, July 1, 2025

Solutions to Difficult Partial Differential Equations (Pt. 2)

 We are given the partial differential equation:    


  u/  t   =   c 2   [ 2 u/  x2 ]

with u = u(x, t)

Such that 0 <  x <     and t > 0

is used when considering a perfectly insulated rod of length (with no lateral heat loss) We include the initial and end conditions for the rod:  u(0, t) = u(  , t)    

And: u (x, 0) = f(x)

Where u represents the temperature of the rod as a function of position x.  Obtain the solutions in terms of Fourier series for:

1) u( x, 0) = f(x)

and:

2) u(x, t) =  u(, t) 

Hint: Use a variables separable method such that:

u(x, t) = X(x)  T (t)

So that:   2 u/  x2  =  X''  T

And:   X T' =  =     X''  T 

Solution:

From the given initial conditions we can write the two equations:

T'  -    k  = 0   and:  X'' - k X = 0

From the given initial conditions we can write:

u(0, t) = X(0) T(t) = 0  Þ   X(0) = 0

u(, t)   =  X() T(t)  = 0  Þ   X() = 0

But, we cannot have X, T and k identically 0, so we choose: 
k  =   - r 2

   And:  X(x)  =  A cos ( r x)  +  B sin  ( r x)

But, X(x) = 0 Þ   A =  (0)

And:  X(x)  =   sin  ( r x)     B   0

Further:   X() = 0   Þ  sin  ( r ) = 0     (  0)

Now let:  =    n p  ℓ   (For n = 1, 2.....)    And take B = 1, then:

X n (x)    =   sin (n x  / ℓ )    Where  X n (x)  denotes many solns.

Going now to the 2nd equation: 

(With  k  =   - r 2 ):

T'  +    r 2 T = 0

Þ   T(t) = a exp (-  r 2 t )   

2 =    n 2 p 2   ℓ 2    =  ln2    (For n = 1, 2.....) 

Then:  Tn(t) = a exp (- 2  ln2  t )   

And:  

un(x, t) =  X n (x) Tn(t) = 

奠n=1  n sin (nx p / ℓ )  exp (- 2  ln2  t )   

But (from condition 1):   

u( x, 0) = f(x) =  å¥ n=1  n sin (nx p / ℓ 

Where:   n   2/  ò  0   f(x) sin (np / ℓ ) x dx

( n = 1, 2, 3.....) 

 

No comments: