In Plasma Physics' comprehensive PH D exams, one 's first problem generally starts with asking for the solution of the 1D Vlasov-Boltzmann equation:
¶ f/ ¶ t + v · Ñ x f + v' Ñ v f = 0
A time-independent solution is generally required and I show here how to proceed. Assuming constants of the motion, then df/dt =0, so we have these conditions for the zero order Vlasov equation:
i) f = f o + f 1
ii) E = E o + E 1
iii) B= Bo + B1
(¶ f/ ¶ t)c = 0
Then we can write:
v Ñ x f o + q/ m (E o + v x Bo ) · Ñ v f o = 0
The total derivative of f o following the zero order or unperturbed orbit is:
(d f o / dt) o = 0
For the first order equation we have:
¶ f 1 / ¶ t + v Ñ x f o + q/ m ( E o + v x Bo ) · Ñ v f 1
= - q/ m ( E 1 + v x B1 ) · Ñ v f o
Þ
( d f 1 / dt ) o = - q/ m ( E 1 + v x B1 ) · Ñ v f o
We now need to specify the zero order orbit in phase space, viz.
X' (t) = V (t)
V (t) = q/ m [F 0 (X, t) + V (t) x B 0..(X, t) ]
Then: X(t') = x(t) + ò t1 t X(t'') dt''
V(t') = v(t) + ò t' t v(t'') dt''
We need to follow the prescription to solve for f 1 by integrating both sides of the earlier boxed equation, e.g.
ò t-¥ ( df 1 / dt ) o = ò t-¥ RHS dt' (zero order orbit)
This leads to the general solution of the linear Vlasov equation:
f 1 (x, v, t) = f 1 [X(t'), V(t'), t' = (-∞)] =
- q/m ò t-¥ dt{E 1 [X(t'), t'] + V(t') x B 1[X(t'), t'] · Ñ v f 0
Suggested Problem:
Show that:
Ñ x · v = 0 and: Ñ v · (E + v x B ) = 0
And write the resulting partial differential equation.
No comments:
Post a Comment