We now revisit residue calculus.
Let f(z) be analytic on and inside a closed contour C, except for a finite number of isolated singularities: z= a1, a2, etc.
which are enclosed by C.
Then:   ò C  f(z) 
dz =      2 pi    ån k = 1    Res f (a k)  
 We now want to elaborate this a bit more by reference to the
diagram shown. In this case we consider the function f(z) is analytic inside
and on the simple
closed
curve C except at a
finite number of specified points: a, b, c, etc.  at which there exist residues:   a - 1  ,       
b - 1 ,  c - 1      , etc.
òC  f(z) 
dz =   2 pi   [a - 1        + 
b - 1         
+  c - 1        + …………………….]
That is, 2 pi    times the sum of the residues at all the
singularities enclosed by C. To ensure this, one would respectively construct
circles C1, C2, C3 etc. as I have done with respective centers at a, b, c etc.
If we take care to do this properly then we can write:
ò C f(z) dz = òC1 f(z) dz + ò C2 f(z) dz + ò C3 f(z) dz + ..........
Where:
ò C f(z) dz = òC1 f(z) dz + ò C2 f(z) dz + ò C3 f(z) dz + ..........
Where:
 ò C1  f(z)  dz    =   2 pi   a - 1        
  ò C2  f(z)  dz   =  2 pi   b - 1       
  ò C3  f(z)  dz  =   2 pi   c - 1       
So that:
 ò C  f(z)  dz=   2 pi   [a - 1  +  b - 1  +  c - 1   + ..] = 2 pi   (sum of residues)
Example
1:
Evaluate the integral:  ò C   cot (z) 
dz
f(z) = cot (z)
For which: ò C  f(z)  dz  
=   2 pi   c - 1      
  
Re-write: f(z) = cot (z) = 1/ tan z
For which singularities occur at tan
z = 0 
Or: o, + p, + 2p,+  3p  etc.
Then Res f(z) =   1/ sec2 z ÷ z = + n p     =   
1/ (1/ cos2 z)
= cos2 z÷ z = + n p     =   
cos2 (np)   
and:  cos2 (np)    = 1  
at z =  (2n + 1) p)/ 2
Therefore:    c - 1  =  1,
and
  ò C  cot
(z)  dz 
=    2 pi   (1) = 2 pi  
Practice Problem:
Integrate:
 ∫ -¥  ¥    x  dx / (x2   - 2x + 2)
 
No comments:
Post a Comment