2) Do the first two radiative envelope computations for temperature, density and pressure, i.e. at radial fractions r/R = 0.183 and r/R = 0.200.
Soln. (A) At r/ R = 0.183 And we have: U = 2.562 and V = 1.389
r = 9.800 x 1010 cm (0.183) = 1.793 x 1010 cm
Mr/M = 0.172 so
Mr = 3.970 x 1033 g (0.172) = 6.83 x 1032 g
density:
r = UMr/4p r3
= [(2.562) (6.83 x 1032 g)]/ 4p (1.793 x 1010 cm) 3
r = 24.16 g/ cm 3 log r = 1. 3831
Pressure:
P = G r Mr/ V r
= [(6.67 x 10-8 dyne-cm 2/ g.2) (24.16 g/ cm 3 )(6.83 x 1032 g)/ (1.389)(1.793 x 1010 cm)
P = 4.417 x 1016 dyne/ cm 2
log P = 16.645
Temperature:
T = t m (H/R) (GM/r)
log t = - 0.15695 so t (dimensionless T) = 0.6969
T = (0.6969) [m (H/R) (GM/r) ] (for m = = 0.64, H = 1.672 x 10-24)
So:
T = 1.417 x 107 K and log T = 7.1516
Soln: (B)
At r/ R = 0.200 And we have: U = 2.450 and V = 1.684
r = 9.800 x 1010 cm (0.200) = 1.960 x 1010 cm
Mr/M = 0.217 so
Mr = 3.970 x 1033 g (0.217) = 8.61 x 1032 g
r = 9.800 x 1010 cm (0.200) = 1.960 x 1010 cm
Mr/M = 0.217 so
Mr = 3.970 x 1033 g (0.217) = 8.61 x 1032 g
density:
r = UMr/4p r3
=
[(2.450) (8.61 x 1032 g)]/ 4p (1.960 x 1010 cm) 3
r = 22.31 g/ cm 3 log r = 1. 3485
Pressure:
P = G r Mr/ V r
= [(6.67 x 10-8 dyne-cm 2/ g.2) (22.31 g/ cm 3 )(6.83 x 1032 g)/ (1.684)(1.96 x 1010 cm)
P = 3.884 x 1016 dyne/ cm 2
log P = 16.5893
Temperature:
T = t m (H/R) (GM/r)
log t = - 0.19200 so t (dimensionless T) = 0.6426
T = (0.6426) [m (H/R) (GM/r) ] (for m = = 0.64, H = 1.672 x 10-24)
So:
T = 1.346 x 107 K and log T = 7.1291
3) Estimate the uncertainty in the core radius as a consequence of the 'fuzziness' of the interface parameters.
The percentage uncertainty can be computed as:
D ( r c ) = 100%(0.172 - 0.148) / 0.172 = 0.024(100%)= 2.4 %
No comments:
Post a Comment